期刊文献+

一类奇异Kirchhoff型问题正解的存在性 被引量:6

Existence of Positive Solutions for a Class of Singular Kirchhoff Type Problem
下载PDF
导出
摘要 Kirchhoff型问题通常被看作非局部问题,起源于非线性振动理论.研究一类奇异Kirchhoff型问题,利用变分方法,获得该问题正解的存在性.该结果丰富奇异Kirchhoff型问题正解的存在性理论. Kirchhoff type problems are often considered to as nonlocal and originate in the theory of nonlinear vibrations. A class of singular Kirchhoff type problems is discussed. By the variational methods,the existence of positive solutions is obtained. This result enriches the theory of positive solutions for Kirchhoff type problems.
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期103-106,共4页 Journal of Sichuan Normal University(Natural Science)
基金 贵州省科学技术科学基金(LKZS[2012]11 LKZS[2012]12和LKZS[2014]22)
关键词 Kirchhoff型问题 奇异 正解 变分方法 Kirchhoff type problem singularity positive solution variational method
  • 相关文献

参考文献15

  • 1GUI C F, LIN F H. Regularity of an elliptic problem with a singular nonlinearity[J]. Proc R Soc Edinb,1993,A123:1021 - 1029.
  • 2SUN Y J, WU S P, LONG Y M. Combined effects of singular and superlinear non - linearities in some singular boundary value problems [ J]. J Diff Eqns,2001,176:511 - 531.
  • 3SUN Y J, WU S P. An exact estimate result for a class of singular equations with critical exponents [ J ]. J Funct Anal,2011,260: 1257 - 1284.
  • 4BOCCARDO L. A Dirichlet problem with singular and supercritical nonlinearities [ J ]. Nonlinear Anal, 2012,75:4436 - 4440.
  • 5DAVID A, BOCCARDO L. Multiplicity of solutions for a Dirichlet problem with a singular and a supercritical nonlinearities [ J ]. Diff Integ Eqns ,2013,26 : 119 - 128.
  • 6DAVID A, LOURDES M M. Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity[ J ]. Nonlinear Anal,2014,95:281 - 291.
  • 7廖家锋,马淑云.一类奇异半线性椭圆问题的注记[J].四川师范大学学报(自然科学版),2012,35(3):335-339. 被引量:2
  • 8廖家锋,张鹏.一类奇异次线性椭圆方程基态解的存在性[J].四川师范大学学报(自然科学版),2015,38(6):867-870. 被引量:2
  • 9廖家锋,张鹏.-类奇异椭圆方程的共振问题[J].数学杂志(已接受).
  • 10LIU X, SUN Y J. Multiple positive solutions for Kirchhoff type problems with singularity[ J]. Commun Pure Appl Anal,2013, 12(2) :721 -733.

二级参考文献30

  • 1Edelson A L. Entire solutions of singular elliptic equations[J]. J Math Anal Appl,1989,139(2):523-532.
  • 2Lazer A C, Mckenna P J. On a singular nonlinear elliptic boundary-value problem[J]. Proc Am Math Soc,1991,111(3):721-730.
  • 3Ghergu M, Rǎdulescu V. Sublinear singular elliptic problems with two parameters[J]. J Diff Eqns,2003,195(2):520-536.
  • 4Shi J, Yao M. On a singular nonlinear semilinear elliptic problem[J]. Proc Roy Soc Edinburgh,1998,A128(6):1389-1401.
  • 5Zhang Z. On a Dirichlet problem with a singular nonlinearity[J]. J Math Anal Appl,1995,194(1):103-113.
  • 6Cui S. Existence and nonexistence of positive solutions for singular semilinear elliptic boundary value problems[J]. Nonl Anal,2000,41:149-176.
  • 7Lions P L. On the existence of positive solutions of semilinear elliptic equations[J]. SIAM Rev,1982,24(4):441-467.
  • 8Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order[M]. 2nd. Berlin:Springer,1983.
  • 9Naito Y, Sato T. Positive solutions for semilinear elliptic equations with singular forcing terms[J]. J Diff Eqns,2007,235:439-483.
  • 10Callegari A, Nashman A. Some singular nonlinear differential equations arising in boundary layer theory[J]. J Math Anal Appl,1978,64(1):96-105.

共引文献8

同被引文献14

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部