期刊文献+

The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model 被引量:1

The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model
原文传递
导出
摘要 In this paper, we introduce stochasticity into an SIR epidemic model with vaccina- tion. The stochasticity in the model is a standard technique in stochastic population modeling. When the perturbations are small, by the method of stochastic Lyapunov functions, we carry out a detailed analysis on the dynamical behavior of the stochastic model regarding of the basic reproduction number R0. If R0 ≤ 1, the solution of the model is oscillating around a steady state, which is the disease-free equilibrium of the corresponding deterministic model. If R0 〉 1, there is a stationary distribution and the solution has the ergodic property, which means that the disease will prevail.
出处 《International Journal of Biomathematics》 2016年第3期177-190,共14页 生物数学学报(英文版)
关键词 Stochastic SVIR epidemic model disease-free equilibrium stationary distri-bution ERGODICITY stochastic Lyapunov functions. 流行病模型 随机扰动 遍历性 渐近行为 Lyapunov函数 传染病模型 动力学行为 无病平衡点
  • 相关文献

参考文献27

  • 1J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math. 64 (2003) 260-276.
  • 2J. Beddington and R. May, Harvesting natural populations in a randomly fluctuating environment, Science 197 (1977) 463-465.
  • 3N. Dalal, D. Greenhalgh and X. R. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl. 325 (2007) 36-53.
  • 4N. Dalal, D. Greenhalgh and X. R. Mao, A stochastic model for internal HIV dynam- ics, J. Math. Anal. Appl. 341 (2008) 1084-1101.
  • 5A. d'Onofrio, Mixed pulse vaccination strategy in epidemic model with realistically distributed infectious and latent times, Appl. Math. Comput. 151 (2004) 181-187.
  • 6H. C. Frederick, A susceptible-infected epidemic model with voluntary vaccinations, 1. Math. Biol. 53 (2006) 253-272.
  • 7R. Z. Hasminskii, Stochastic Stability of Differential Equations (Sijthoff and Noord- hoff, Alphen aan den Rijn, The Netherlands, 1980).
  • 8L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equations 217 (2005) 26 -53.
  • 9D. Q. Jiang and N. Z. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl. 303 (2005) 164-172.
  • 10D. Q. Jiang, N. Z. Shi and X. Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl. 340 (2008) 588-597.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部