期刊文献+

基于AdaBoost-SVM的P2P流量识别方法 被引量:1

P2P Traffic Identification Method Based on Ada Boost and SVM
下载PDF
导出
摘要 针对传统的P2P流量识别技术存在识别率低和误判率高的缺点,将机器学习中Ada Boost算法的良好分类能力和SVM的泛化能力结合起来,提出一种基于Ada Boost-SVM组合算法的P2P网络流量识别模型,将SVM作为Ada Boost的基分类器,运用最小近邻法计算支持向量与训练集的样本间的距离实现分类进行P2P流量识别。最后,以4种P2P流量数据为研究对象在MATLAB上进行仿真,仿真结果表明,提出的Ada Boost-SVM的组合算法在P2P网络流量的分类性能和分类准确率上都优于单纯的Ada Boost和SVM,组合算法的P2P流量平均识别率高达98.7%,远高于Ada Boost和SVM的识别率。 The traditional P2P traffic identification technology has shortcomings of low recognitionrate and high rate of false positives,this paper combines AdaBoost algorithm with good generalizationability of SVM classification together,Proposed P2P network traffic identification model based on acombination of AdaBoost -SVM algorithm. The minimum distance is calculated using the nearestneighbor method and support vector samples of the training set to achieve the classification betweenP2P traffic identification. Finally,taking four kinds of P2P traffic data for example,simulation resultsshow that,AdaBoost and combinations of the SVM algorithm is proposed in the classificationperformance and classification accuracy is better than pure AdaBoost and SVM,the average recognitionrate of Combination Algorithm was up to 98.7 豫,much higher than the recognition rate of AdaBoost andSVM.
作者 刘悦 李雪
出处 《火力与指挥控制》 CSCD 北大核心 2016年第5期15-18,共4页 Fire Control & Command Control
基金 河南省科技厅科学技术项目(2014309) 开封市科技局科技攻关计划基金资助项目(130145)
关键词 对等网络流量 支持向量机 分类器 分类能力 泛化能力 P2P traffic,support vector machine,classifier,classification capabilities,generalizationability
  • 相关文献

参考文献10

二级参考文献48

  • 1曹铮,傅文卿,黄蕊.互联网流量成分及运营策略分析[J].中国新通信,2006,8(3):76-78. 被引量:8
  • 2金婷,王攀,张顺颐,陆青莲,陈东.基于DPI和会话关联技术的QQ语音业务识别模型和算法[J].重庆邮电学院学报(自然科学版),2006,18(6):789-792. 被引量:10
  • 3Wolpert D. Stached Generalization[J]. Neural Network, 1992,5(2):241-260.
  • 4Hagan M T,Demuth H B, Beale M H. Neural Network Design[M]. Beijing: China Machine Press,2002.
  • 5KANG HEE-JOONG. A Framework for Probabilistic Combination of Multiple Classifiers at an Abstract Level , Engng application[J]. Artificial Intellience, 1997,10(4): 379-385.
  • 6Bilmes J A, Kirchhoff K. Generalized rules for combination and joint training of classifiers [J]. Pattern Analysis & Applications,2003(6):201-211.
  • 7Tolba A S,Abu-Rezq A N. Combined Classifiers for Invariant Face Recognition [J]. Pattern Analysis & Applications, 2000(3):289-302.
  • 8Kropas-Hughes C V, Rogers S K, Oxley M E. et al. Backpropagation of an Image Similarity Metric for Autoassociative Neural Networks [J]. Pattern Analysis & Applications, 2000(3):31-38.
  • 9Liu ChengLin. Classifier combination based on confidence transformation[J].Pattern Recognition,2005(38):11-28.
  • 10Liu ChengLin, Hao Hongwei, Sako H. Confidence Transformation for Combining Classifiers[J]. Pattern Analysis & Applications, 2004(7): 2-17.

共引文献115

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部