摘要
舰船交通服务系统是民用雷达的信息集成系统,探测微弱目标存在RCS小、回波弱、杂波强等问题,导致信噪比低,难以实现有效检测跟踪。基于粒子滤波的检测前跟踪技术对低信噪比下微弱目标信息积累和探测有良好效果。通过采集单设备实测数据,构建遗忘因子和收敛因子以增加重采样的效率,引入虚拟采样保持粒子的多样性,提升粒子滤波对微弱目标的探测能力。仿真试验表明,改进后的算法可实现舰船交通服务系统对微弱目标的有效探测,并能获得较精准的目标状态估计值。
VTS (Vessel Traffic Services)system is a very important civil Radar surveillancefurnishment,which is challenged by various problem especially when monitoring objects with small RCSin a low SNR or strong noise scene; Track before detection(TBD)algorithm based upon Particle filter(PF)takes advantage for its adaption in solving non-linear,non-Gaussian or unsteady state problems,especially when detecting and tracking dim object in a low SNR scene. In this paper synthetic samplestrategy,fading factor and convergence factor are integrated to improve sampling performance and keepdiversity of the particle. Analysis and experiment proves that this promoted algorithm can detect andtrack faint target in VTS radar video and approximate target’s status more precisely compared withoriginal EPF-TBD algorithm at cost of a few more computing burden.
出处
《火力与指挥控制》
CSCD
北大核心
2016年第5期141-144,148,共5页
Fire Control & Command Control
基金
船舶工业国防科技预研基金资助项目(13J3***)
关键词
舰船交通服务系统
微弱目标
粒子滤波
检测前跟踪
vessel traffic services system,dim target,particle filter,track before detection