期刊文献+

薄晶硅太阳电池的研究进展 被引量:2

Development progress of thin crystalline silicon solar cell
下载PDF
导出
摘要 薄晶硅太阳电池减少硅材料厚度不仅能降低材料消耗和电池成本,还可以赋予其一定的柔韧性,拓展其在可穿戴设备、建筑光伏一体化等领域的潜在应用,成为目前太阳电池领域的研究热点。近年来的研究工作多集中在通过纳米图案化结构、等离激元效应等途径增强薄晶硅对太阳光,尤其是长波长太阳光的吸收,以弥补硅吸收层薄化后引起的吸光能力不足的问题。本文将侧重从图案化纳米结构、等离激元效应增强薄晶硅电池的光吸收性能、薄晶硅太阳电池电学性能的优化、新型薄晶硅太阳电池等方面,对薄晶硅太阳电池的发展现状进行阐述。 Thin crystalline silicon solar cell with reduced thickness can save silicon material consumption and reducethe cost of solar cell. Besides, it can also be extended to apply potentially in fields of wearable devices and buildingintegrated photovoltaic due to its flexibility. It has attracted tremendous attention from researchers. The researches in recentyears mostly focus on optical absorption enhancement of thin crystalline silicon, especially long wavelength light, to offsetlow optical absorption after silicon material decrease through patterned nanostructures and surface plasmon polaritons. Inthis paper, current research of thin crystalline silicon solar cell about optical absorption enhancement by patternednanostructures and plasmon polaritons effect, optimization of electrical properties and novel thin crystalline silicon solarcell are reviewed.
出处 《电子元件与材料》 CAS CSCD 2016年第6期16-22,共7页 Electronic Components And Materials
基金 国家自然基金青年项目资助(No.61504155)
关键词 薄晶硅太阳电池 纳米图案化结构 综述 等离激元效应 光管理 钝化 thin crystalline silicon solar cell patterned nanostructure review plasmon polaritons effect lightmanagement passivation
  • 相关文献

参考文献28

  • 1MASUKO K, SHIGEMATSU M, HASHIGUCHI T, et al. Achievementof more than 25% conversion efficiency with crystalline siliconheterojunction solar cell [J]. IEEE J Photovolt, 2014, 4(6): 1433-1435.
  • 2PALA R A, WHITE J, BARNARD E, et al. Design of plasmonicthin-film solar cells with broadband absorption enhancements [J]. AdvMater, 2009, 21(34): 3504-3509.
  • 3PETERMANN J H, ZIELKE D, SCHMIDT J, et al. 19%-efficient and43 μm-thick crystalline Si solar cell from layer transfer using poroussilicon [J]. Prog Photovolt Res Appl, 2012, 20(1): 1-5.
  • 4BLAKERS A W, ARMOUR T. Flexible silicon solar cells [J]. Sol EnergyMater Sol Cells, 2009, 93(8): 1440-1443.
  • 5WANG S, WEIL B D, LI Y, et al. Large-area free-standing ultrathinsingle-crystal silicon as processable materials [J]. Nano Lett, 2013, 13(9):4393-4398.
  • 6WANG K X, YU Z, LIU V, et al. Absorption enhancement in ultrathincrystalline silicon solar cells with antireflection and light-trappingnanocone gratings [J]. Nano Lett, 2012, 12(3): 1616-1619.
  • 7JEONG S, MCGEHEE M D, CUI Y. All-back-contact ultra-thin siliconnanocone solar cells with 13.7% power conversion efficiency [J]. NatCommun, 2013, 4: 2950/1-2950/7.
  • 8INGENITO A, ISABELLA O, ZEMAN M. Experimental demonstrationof 4n2 classical absorption limit in nanotextured ultrathin solar cells withdielectric omnidirectional back reflector [J]. ACS Photonics, 2014, 1(3):270-278.
  • 9KIM I, JEONG D S, LEE W S, et al. Silicon nanodisk array design foreffective light trapping in ultrathin c-Si [J]. Opt Express, 2014, 22(S6):A1431-A1439.
  • 10SHIR D, YOON J, CHANDA D, et al. Performance of ultrathin siliconsolar microcells with nanostructures of relief formed by soft imprintlithography for broad band absorption enhancement [J]. Nano Lett, 2010,10(8): 3041-3046.

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部