期刊文献+

基于扩展有限元的钢结构钻孔止裂研究 被引量:3

Research of steel structure crack arrest drilling based on extended finite element
下载PDF
导出
摘要 通过以ABAQUS为平台,采用扩展有限元方法对钢结构钻孔止裂进行数值模拟,同时对循环载荷下止裂孔应力应变状态进行分析,对疲劳裂纹钻孔止裂处理机理进行了深入研究。研究表明,扩展有限元法分析疲劳裂纹扩展再生及钻孔止裂技术时不需要预先指定裂纹扩展方向,无须重新剖分网格,克服了常规有限元方法的弊端,为复杂形状裂纹问题提供了更优的解决方法;止裂孔减小了孔边应力集中部位的平均应力,延长了疲劳裂纹在止裂孔边的再生寿命;当止裂孔直径取为0.4倍疲劳裂纹长度时可以获得较好止裂效果,对钻孔止裂理论的研究具有一定参考意义。
作者 熊祖钊 易流
出处 《橡塑技术与装备》 CAS 2016年第8期80-82,共3页 China Rubber/Plastics Technology and Equipment
基金 国家自然科学基金(51174147) 湖北省自然科学基金(2013CFA131)(M201401)
  • 相关文献

参考文献5

  • 1王中光.材料的疲劳[M].国防工业出版社,1999.
  • 2M.R.Avatollahi,S.M.J.Razaviand H.R,Chamani. Fatigue life by crack Repair using Stop-hole Technique under mode-I and mode-II Loading conditions[J].Original Research Article Procedia Enginering.2014,74:l 8-21.
  • 3Yue Yin and XiliaugLiu. Numerical study on fatigue repair of structural steel with stop hole related technique[J]. Fourth International Conference on Advances in Steel Structural 2005,11:1 145-1 150.
  • 4HaoWu, Abdellatif lmad and Noureddine Bebseddip. On the prediction of the residual fatigue life of cracked structures repaired by stop-hole method[J].Original Research Article Procedia Enginering.2010,32(4):670-677.
  • 5尹冠生,周肖飞.基于XFEM的损伤扩展模拟[J].长安大学学报(自然科学版),2013,33(2):68-72. 被引量:11

二级参考文献11

  • 1方修君,金峰.基于ABAQUS平台的扩展有限元法[J].工程力学,2007,24(7):6-10. 被引量:64
  • 2徐芝纶.弹性力学[M].北京:高等教育出版社,2006.
  • 3庄茁,柳占立,成斌斌,等.扩展有限单元法[M].北京:清华大学出版社,2012.
  • 4Zienkiewicz O C, Taylor R L. The finite element method (fifth edition)[M]. Beijing: Tsinghua Uni- versity Press, 2006.
  • 5Sukumar N, Chopp D L, Mos N, et al. Modeling holes and inclusions by level sets in the extended fi- nite-element method [J]. Computer Methods in Ap- plied Mechanics and Engineering, 2001,190 ( 46/47 ) : 6183-6200.
  • 6Daux C, Mos N, Dolbow S,et al. Arbitrary branched and intersecting cracks with the extended finite ele- ment method[J]. International Journal for Numerical Methods in Engineering,2000(48) : 1741-1760.
  • 7Duan Q,Song J H, Menouillard T, et al. Element-lo- cal level set method for three-dimensional dynamic crack growth[J]. International Journal for Numerical Methods in Engineering, 2009,80 (12) : 1520-1543.
  • 8Giner E,Sukumar N,Tarancon J E,et al. An Abaqus implementation of the extended finite element meth- od[J]. Engineering Fracture Mechanics,2009,76(3) : 347-368.
  • 9Ribeaucourt R, Baietto-Dubourg M C, Grarouil A. A new fatigue frictional contact crack propagation mo- dle with the coupled X-FEM/LATIN method[J].Computer Methond in Applied Mechanics and Engi- neering, 2007,196 (33-34) : 3230-3247.
  • 10Mescbke G,Dumstorff P. Energy-based modeling of cohesive and cohesionless cracks via XFEM[J].Com- puter Methond in Applied Mechanics and Engineering, 2007,196(21-24) :2338-2357.

共引文献11

同被引文献19

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部