期刊文献+

基于小波神经网络的数字信号调制识别

Digital modulation recognition based on wavelet nerual network
下载PDF
导出
摘要 本文采用熵特征的提取方法,大大减小了特征值的计算量,增强了小波神经网络(WNN)识别的有效性。同时采用改进的算法训练小波神经网络,有效的避免算法陷入局部最小值,克服了传统BP网络的固有缺点,并提高了小波神经网络的训练速度。结果表明,该系统能快速有效的识别出数字信号的调制类型,具有较高的识别精度。 In this paper,tincture extraction method based on entropy is used to decrease computational times and strengthen the effectiveness of classification.At the same time,improved arithmetic is used to train WNN ,which effectively avoide getting into partial minimum values.It conquers the inherent flaw of conditional BP net,and improves training speed as well as ..The test shows that the system can recognize types of digital modulation signals.Application of this method to modulation recognition of practial signals shows satisfactory performance.
作者 杨芬芬 周井泉 YANG Fen-fen, ZHOU Jing-quan (Optical & Electronic Engnieering College, Nanjing University of Post & Telcomunications, Nanjing, jiangsu, China 210003)
出处 《电脑知识与技术》 2008年第S2期24-25,共2页 Computer Knowledge and Technology
关键词 小波能量熵 小波神经网络 BP网络 调制识别 wavelet energy and entropy wavelet nerual network BP net modulation recognition
  • 相关文献

参考文献2

二级参考文献17

  • 1Nandi A K,Azzouz E E.Algorithms for automatic modulation recognition of communication signals[J].IEEE transactions on Communications.1998,46(4):431-436.
  • 2Wong M L D,Nandi A K.Automatic digital modulation recognition spectral and statistical features with multi-layer perceptrons[R].Sixth International symposium on signal processing and its Applications (SSPA).2001,2:390-393.
  • 3Namjin Kim,Nasser Kehtarnavaz,Mark B.Yeary,et al.DSP-based hierarchical neural network modulation signal classification[J].IEEE transactions on Neural Networks.2003,14(5):1065-1071.
  • 4Widrow B,Nguyen D.Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights[J].IEEE International Conference on Networks.2000:21-26.
  • 5Asoke K Nandi.Algorithms for automatic modulation recognition of communication signals[J].IEEE transactions on Communications,1998,47(4):160-167.
  • 6I Daubechies.Ten Lectures on Wavelets.CBMS-Conference Lecture Notes[M].SIAM Philadelphia:SIAM V.6,1992.
  • 7G Krishna Prasad,J S Sahambi.Classification of ECG Arrhythmias using Multi-Resolution Analysis and Neural Networks[C]// IEEE TENCON 2003.Bangalore,India,Allied Publishes Pvt Ltd,2003:482-488.
  • 8Clifton D,Addison P S,Stiles M K,et al.Using wavelet transform reassignment techniques for ECG characterisation[J].Computers in Cardiology(S0276-6574),2003,9(1):581-584.
  • 9H H Szu,B Telfer,S Kadambe.Neural network adaptive wavelets for signal representation and classification.[J].Optical Engineer(S91-3286),1992,31(9):1907-1916.
  • 10Angrisani L Daponte,P Dapos Apuzzo,M.Wavelet Network-Based Detection and Classification of Transients.[J].IEEE transactions on Instrumentation and Measurement(S0018-9456),2001,50(5).

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部