期刊文献+

基于局部单元特性提取的聚类算法研究

Research on Clustering Algorithm Based on Local Cells Feature Extraction
下载PDF
导出
摘要 该算法思想将整体区域划分成若干局部单元区域,并将这些单元标以密集与否、相互间存在阻碍与否等统计特性,然后,通过分析局部单元特性找出相互间有关联的、密集的、不存在阻碍的单元,基于该相对密集区域设立新的聚类中心点并返回。最后,通过分析该算法复杂度得出该算法具有较少输入参数、结果的可靠性等优越性。 The proposed algorithm divides the overall area into a number of local cells. Each cell is associated with statistical information that enables us to label the cell as dense or non-dense , also label each cell as obstructed or non-obstructed. Then the algorithm finds the regions of connected, dense, non-obstructed cells. the algorithm founds a new cluster center for each such region and returns those centers as centers of the relatively dense regions. Finally, the algorithm requires less input parameters and the quality of results is guaranteed according to its complexity analysis.
作者 郑金彬 ZHENG Jin-bin (College of Mathematics and Computer Science ,Longyan University,Longyan 364012,China)
出处 《电脑知识与技术(过刊)》 2010年第23期6425-6427,共3页 Computer Knowledge and Technology
基金 福建省教育厅基金资助项目(JA08229)
关键词 空间数据库 数据挖掘 聚类 算法的复杂性 spatial databases data mining clustering complexity of algorithms
  • 相关文献

参考文献2

二级参考文献13

  • 1黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 2[1]Hang T. BIRCH. An efficient data clustering method for very large database. In: Proc of the ACM SIGMOD International Conf. on Management of Data Montreal: ACM press, 1996,83 ~ 94.
  • 3[2]Udipto Guha, Rastogi R, Shim K. CURE: A clustering algorithm for large databases. Technical report, Bell Laboratories, Mucray Hill, 1997,67 ~ 78,1998,73 ~ 84.
  • 4[3]Martin Ester, Hans- Peter Kriegel, Jorg Sander, Xiaowei Xu. A desitybased algorithm for Discovery clusters in large spatial databs e with noise.In Proc. Of 2th International Conference on knowledge Discovery in Databases and Data Mining, Portland, Oregon, August, 1996.
  • 5[4]Gehrke J,Agrawal R,Gunopulos D,Raghavan P.Automatic Subspace Glustering of High Dimensional Data for Data Mining Applications. ACM SIGMOD, 1998,72(2) :94 ~ 105.
  • 6[5]Christopher J., Philip K., Systems for Knowledge Discovery in Databases.IEEE Trans. On Knowledge and Data Engineering. 1993,5 (6) :903 ~ 913.
  • 7[6]OPERSKI K., Han J., Adhikary J., Mining Knowledge in geographic data. In Comm. ACM 1997.
  • 8[7]Fayyad U., Haussler D., Mining Scientific Data, Communication of the ACM, 1996,39(11).
  • 9[8]Inmon W. ,Building the Data Warehouse. Boston:QED Technical Publishing Croup, 1992,163 ~ 312.
  • 10[9]Hongjun Lu, Hiroshi Motoda, Huan Liu, KDD: Techniques and Application. 1997,3 ~ 12.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部