期刊文献+

倾斜激励晃动中自由面波高和漩涡的数值模拟

Numerical Simulation of Free Surface Elevation and Vortex under Forced Pitching Oscillation
下载PDF
导出
摘要 本文建立了基于Navier-Stokes方程的Crank-Nicolson有限差分方法,对二维矩形水槽进行了倾斜激励晃动数值模拟.为了验证数值方法的有效性,本文的数值结果与线性解析解以及其它文献中的数值解进行了比较.此外,文中也数值研究了不同Reynolds数下自由面的波高、漩涡的变化形式和周期。 A Crank-Nicolson finite difference method based on the Navier-Stokes equations has been developed in this study. The two-dimensional rectangular tank under forced pitching oscillation has been numerically simulated. The numerical results are compared with the linearized analytical solution and other reported numerical calculation to verify the validity of the present numerical method.Furthermore, the free surface elevations, the variations and periods of the vortexes with different Reynolds numbers have also been studied numerically.
作者 黄玉萍
出处 《价值工程》 2016年第15期176-180,共5页 Value Engineering
关键词 NAVIER-STOKES方程 Crank-Nicolson有限差分方法 自由面波高 漩涡 Navier-Stokes equations Crank-Nicolson finite difference method free surface elevation vortex
  • 相关文献

参考文献3

二级参考文献18

  • 1Faltinsen O M. A numerical nonlinear method of sloshing in tanks with two dimensional fow[J]. J Ship Res, 1978, 18: 224--241.
  • 2Faltinsen O M, Timokha A N. Asymptotic model approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth[J. J Fluid Mech, 2002, 470: 319--357.
  • 3Frandsen J B. Sloshing motions in excited tanks[-J. J Computat Phys, 2004, 196: 53--87.
  • 4Frandsen J B. Numerical bridge deck studies using finite elements. Part I: Ftutter[J. J Fluid Struct, 2004: 171-- 191.
  • 5Wu G X, Eatock Taylor R. The coupled inite element and boundary element analysis of nonlinear interactions be tween waves and bodiesJ]. Ocean Eng, 2003, 30.. 387--400.
  • 6Nakayama T, Washizu K. The boundary element method applied to the analysis of two dimensional nonlinear slosh ingproblems[J. Int J Numer Meth Eng, 1981, 17:1 631--1 646.
  • 7Nakayama T, Washizu K. Reduced order modeling of liquid sloshing in 3D tanks using boundary element methodEJ. Eng Anal Bound Elem, 2009, 33.. 750--761.
  • 8Kami/ski M. Potential problems with random parameters by the generalized perturbation-based stochastic finite ele- ment method[-J. Comput -Struct, 2010, 88: 437--445.
  • 9Lu L, Cheng L, Teng B, et al. Numerical simulation and comparison of potential flow and viscous fluid models in near trapping of narrow gaps[J]. J Hydr: Ser B, 2010, 22: 120--125.
  • 10Chen B F. Nonlinear hydrodynamic pressures by earthquakes on dam faces with arbitrary reservoir shapesEJ]. J Hy- dr Res, 1994, 32 401--413.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部