期刊文献+

基于数学形态学的侧扫声呐图像轮廓自动提取 被引量:12

Automatic extraction of the side-scan sonar imagery outlines based on mathematical morphology
下载PDF
导出
摘要 侧扫声呐图像特征自动提取的难点在于特征地貌边缘检测较困难,依据图像灰度突变检测得到的边缘比较粗糙、不连续,而且有断口和小洞。本文在对图像进行预处理和阈值化的基础上,采用数学形态学方法对图像进行处理,即用具有一定形态的结构元素去量度和提取图像中的对应形状,得到连续化、粗化、圆滑的特征区域边缘填充目标内部阴影且消除背景噪声。基于数学形态学的侧扫声呐图像特征自动提取的主要步骤为:首先对侧扫声呐图像进行预处理,然后进行灰度阈值化,接着采用数学形态学方法进行处理,最后对处理后的图像进行边缘检测,提取出特征地貌边缘。实验表明,采用数学形态学方法进行处理后,错断、离散的海底目标物变得连续,背景噪声大大减少,自动提取结果准确可靠。 Automatic extraction of the side-scan sonar imagery outlines is difficult.The results extracted by edge detection based on sharp gray-scale gradient of image are discontinuous and rough,and also have gaps and holes edge detection.After preprocessing the side-scan sonar image and thresholding,some processings are carried out to take the smooth and continuous rims of the geological objectives,and to eliminate the background noises,by measuring and extracting the corresponding shape from the image with a certain form of structural element according to the basic idea of mathematical morphology.The algorithm of feature extraction for the side-scan sonar imagery based on mathematical morphology is as follows:firstly,preprocess the image and do thresholding it;then process the image by mathematical morphology;finally obtained the edges of the geological objectives by edge-detection technology.The numerical experiments show that this method leads to smooth and continuous and accurate detection,meanwhile,greatly reduced background noise.
出处 《海洋学报》 CAS CSCD 北大核心 2016年第5期150-157,共8页
基金 中海油田服务股份有限公司科研项目--AUV调查数据处理解释系统开发(E-23132019)
关键词 侧扫声呐图像 数学形态学 海底地貌特征 自动提取 side-scan sonar mathematical morphology seabed feature automatic extraction
  • 相关文献

参考文献21

二级参考文献100

  • 1许枫,丛鸿文.侧扫声纳声图判别[J].海洋测绘,2001,21(1):58-61. 被引量:21
  • 2李了了,邓善熙,丁兴号.基于大津法的图像分块二值化算法[J].微计算机信息,2005,21(08X):76-77. 被引量:113
  • 3金海燕,焦李成,刘芳.基于Curvelet域隐马尔可夫树模型的SAR图像去噪[J].计算机学报,2007,30(3):491-497. 被引量:22
  • 4尚政国,赵春晖,冯敏.基于Curvelet变换水下声纳图像去噪研究[J].应用科技,2007,34(5):11-15. 被引量:4
  • 5黄谟涛.多波束测深技术研究进展与展望[J].海洋测绘,2000,78(3):2-7.
  • 6Irwin E S.Camera Models and Machine Perception[D].Standford,CA,USA:Standford University,1970.
  • 7Canny J.A Computational Approach to Edge Detection[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1986,8(6):679-698.
  • 8Jiang Mingyan,Yuan Dongfeng.A Multi-grade Mean Morphologic Edge Detection[C]//Proc.of the 6th Int'l Conf.on Signal Processing.New York,USA:[s.n.],2002.
  • 9Thompson W E.A Fuzzy If-then Approach on Edge Detection[C]// Proc.of the 2nd IEEE Int'l Conf.on Fuzzy Systems.[S.l.]:IEEE Press,1993.
  • 10Todd L,Hidenorl I,Hirohisa S.Image Filtering,Edge Detection,and Edge Tracing Using Fuzzy Reasoning[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1996,18(5):481-491.

共引文献275

同被引文献150

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部