期刊文献+

Modeling and simulation of the spread of H1N1 flu with periodic vaccination 被引量:1

Modeling and simulation of the spread of H1N1 flu with periodic vaccination
原文传递
导出
摘要 Influenza H1N1 has been found to exhibit oscillatory levels of incidence in large pop- ulations. Clear peaks for influenza H1N1 are observed in several countries including Vietnam each year [M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. Hien, N. T. Hien, N. Van Kinh and P. Horby, Modelling the progression of pandemic influenza A (H1N1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Med. 7 (2009) 43, Doi: 10.1186/1741-7015-%43]. So it is important to study seasonal forces and factors which can affect the transmission of this disease. This paper studies an SIRS epidemic model with seasonal vaccination rate. This SIRS model has a unique disease-free solution (DFS). The value Ro, the basic reproduction number is obtained when the vaccination is a periodic function. Stability results for the DFS are obtained when R0 〈 1. The disease persists in the population and remains endemic if R0 〉 1. Also when R0 〉 1 existence of a nonzero periodic solution is proved. These results obtained for our model when the vaccination strategy is a non-constant time-dependent function.
出处 《International Journal of Biomathematics》 2016年第1期47-63,共17页 生物数学学报(英文版)
关键词 Mathematical modeling disease control periodic vaccination rate basicreproduction number R0 PERIODICITY influenza. 流感疫苗 仿真建模 周期函数 甲型 疫苗接种 传播 时间依赖性 S模型
  • 相关文献

参考文献17

  • 1Z. Agur, L. Cojocaru, G. Mazor, 1q.. Anderson and Y. Danon, Pulse mass measles vaccination across age cohorts, Proc. Natl. Acad. Sci. USA 90 (1993) 11,698-11,702.
  • 2M. F. Boni, B. H. Manh, P. Q. Thai, J. Farrar, T. Hien, N. T. Hien, N. Van Kinh and P. Horby, Modelling the progression of pandemic influenza A (HIN1) in Vietnam and the opportunities for reassortment with other influenza viruses, BMC Med. 7 (2009) 43, Doi: 10.1186/1741-7015-7-43.
  • 3T. A. Burton, Stability and Periodic Solutions of Ordinary and Functional Differential Equations (Academic Press, New York, 1985).
  • 4Centers for Disease Control and Prevention (2009), http://www.cdc.gov/hlnlflu/ updates/060509.htm.
  • 5K. Dietz, The incidence of infectious diseases under the influence of seasonal fluc- tuations, in Proc. Workshop on Mathematical Modelling in Medicine, Mainz, eds. J. Berger, W. Biihler, R. Repges and P. Tautu, Lecture Notes in Biomathematics, Vol. 11 (Springer-Verlag, Berlin, 1976), pp. 1-15.
  • 6S. H. Ebrahim, Z. A. Memish, T. M. Uyeki, T. A. Khoja, N. Marano and S. McNabb, Public health pandemic HIN1 and the 2009 Hajj, Science 326 (2009) 938-940.
  • 7D. Greenhalgh and I. A. Moneim, SIRS epidemic model and simulations using differ- ent types of seasonal contact rate, Syst. Anal. Model. Sirnulat. 43(5) (2003) 573-600.
  • 8Z. A. Memish, S. McNabb and F. Mahoney, Establishment of public health security in Saudi Arabia for the 2009 hajj in response to pandemic influenza A H1N1, Lancet 374 (2009) 1786-1791.
  • 9I. A. Moneim and D. Greenhalgh, Threshold and stability results for an SIRS epi- demic model with a general periodic vaccination strategy, J. Biol. Syst. 13(2) (2005) 131-150.
  • 10H. Nishiura and H. Inaba, Estimation of the incubation period of influenza A (H1N1) among imported cases: Addressing censoring using outbreak data origin of importa- tion, 272 (2011) 123-130.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部