期刊文献+

MIMO仿射型极值搜索系统的输出反馈滑模控制

Output-feedback sliding mode control for MIMO affine extremum seeking systems
下载PDF
导出
摘要 针对一类多输入多输出(MIMO)仿射型非线性极值搜索系统的控制问题,提出了一种输出反馈滑模控制方法。将原系统分解为若干个单输入单输出(SISO)极值搜索子系统,并针对每个极值搜索子系统,考虑到系统状态量不可测的特点,以斜坡函数作为新系统输出量的参考跟踪信号,采用输出跟踪误差以及该误差符号函数的积分值建立切换函数,设计得到基于输出反馈的滑模极值搜索控制律。稳定性分析证明:在任意初始条件下,本文方法可使系统的输出量全局收敛至期望极值的任意小邻域内,并且所有状态量均一致范数有界。仿真结果验证了本文方法的有效性。 An output-feedback sliding mode control method is proposed for a class of multi-input multioutput( MIMO) affine nonlinear extremum seeking systems. Firstly,the original MIMO affine nonlinear extremum seeking system is decomposed into several single-input single-output( SISO) extremum seeking subsystems. Considering the subsystem's states are unmeasurable,the control method uses a simple ramp time function as the reference signal of the subsystem 's output,constructs the sliding mode manifold by the output tracking error and the integral of the sign function of the tracking error,and designs the output-feedback extremum seeking control law with sliding mode. The stability analysis shows that the MIMO nonlinear seeking extremum system with the proposed control method is possible to achieve an arbitrarily small neighborhood of the desired optimal point under all initial conditions,and all the states in the closed-loop system remain uniformly bounded. Simulation results are presented to illustrate the effectiveness of the control method.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第4期718-727,共10页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(60674090) 中国博士后科学基金(2013M542480)~~
关键词 仿射型非线性系统 极值搜索系统 输出反馈 滑模控制 一致有界 affine nonlinear systems extremum seeking systems output-feedback sliding mode control uniformly bounded
  • 相关文献

参考文献15

  • 1DEHAAN D, GUAY M.Extremum-seeking control of state-constrained nonlinear systems[J].Automatica,2005,41(9):1567-1574.
  • 2CENTIOLI C, IANNONE F,MAZZA G,et al.Extremum seeking applied to the plasma control system of the frascati tokamak upgrade[C]//Proceedings of the 44th IEEE Conference on Decision Control/European Control Conference 2005.Piscataway,NJ:IEEE Press,2005:8227-8232.
  • 3KRSTIC M, BANASZUK A.Multivariable adaptive control of instabilities arising in jet engines[J].Control Engineering Practice,2006,14(7):833-842.
  • 4PETERSON K S, STEFANOPOULOU G.Extremum seeking control for soft landing of an electromechanical valve actuator[J].Automatica,2004,40(6):1063-1069.
  • 5BASTIN G, NESIC D,TAN Y,et al.On automatic seeking of optimal steady-states in biochemical processes[C]//7th IFAC Symposium on Nonlinear Control Systems.Pretoria:Curran Associates,Inc.,2007:814-819.
  • 6DEWASME L, VANDE W A.Adaptive extremum-seeking control applied to productivity optimization in yeast fed-batch cultures[C]//Proceedings of the 17th World Congress and the International Federation of Automatic Control.Seoul:Curran Associates,Inc.,2008:9713-9718.
  • 7ZHONG Z D, HUO H B,ZHU X J,et al.Adaptive maximum power point tracking control of fuel cell power plants[J].Journal of Power Sources,2008,176(1):259-269.
  • 8GWAK K W. Application of extremum seeking control to turbodynamic blood pumps[J].ASAIO Journal,2007,53(4):403-409.
  • 9KRSTIC M. Toward faster adaptation in extremum seeking control[C]//Proceeding of the 38th IEEE Conference on Decision and Control.Piscataway,NJ:IEEE Press,1999:4766-4771.
  • 10TAN Y, NESIC D,MAREELS I.On stability properties of a simple extremum seeking scheme[C]//Proceedings of the 45th IEEE Conference on Decision & Control.Piscataway,NJ:IEEE Press,2006:2807-2812.

二级参考文献9

  • 1S Drakunov, U Ozguner, P Dix, et al. ABS control using optimum search via sliding mode[J]. IEEE Trans Control Systems Technology, 1995,3( 1 ) : 79 - 85.
  • 2B Zuo, Y A Hu. Optimizing UAV close formation flight via extremum seeking [ A ]. The 5th WCICA [ C ]. Hangzhou, China: IEEE, 2004,3302 - 3305.
  • 3S Yeung, H H Wang, M Krstic. Experimental apphcation ot extremum seeking on an axial-flow compressor[J]. IEEE Trans Control Systems Technology,2000,8(2) : 300 - 309.
  • 4M Krstic. Toward faster adaptation in extremum seeking control [A]. Proceeding of the 39th IEEE Conference on Decision and Control[C]. USA: IEEE, 1999.4766 - 4771.
  • 5Y Pan, U Ozguner, T Acarman. Stability and performance improvement of extremum seeking control with sliding mode[J]. Internation Journal of Control, 2003,76(9/10) :968 - 985.
  • 6L N Chen, K Aihara. Chaotic simulated annealing by a neural network model with transient chaos[ J ]. Neural Network, 1995, 8(6) :915 - 930.
  • 7K P Wong, S R Meikle, D G Feng, et al. Estimation of input function and kinetic parameters using simulated annealing: application in a flow model [ J ]. IEEE Trans Nuclear Science, 2002,49(3) :707 - 173.
  • 8马威,张国平,王正欧.一种基于参数扰动退火策略的神经网络全局优化新算法[J].系统工程理论方法应用,2002,11(4):314-318. 被引量:2
  • 9张强,马润年,王超,许进.具有暂态混沌动力学的神经网络及其在函数优化计算中的应用[J].自然科学进展,2003,13(1):104-107. 被引量:8

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部