期刊文献+

基于简单WENO-间断Galerkin的Euler方程自适应计算 被引量:3

Adaptive simple WENO limiter-discontinuous Galerkin method for Euler equations
下载PDF
导出
摘要 为了得到Euler方程的高精度、高分辨率数值解,介绍了间断Galerkin方法、三角形单元上简单WENO限制器的基本原理以及基于自适应网格加密的激波捕捉方法。将简单WENO限制器-间断Galerkin方法应用到曲边四边形单元上,通过单元边界上高斯积分点的坐标来搜索相邻单元从而得到相邻单元的单元编号,实现了基于"问题单元"的局部网格加密自适应计算。对若干典型问题进行编程计算,结果表明,简单WENO限制器可以应用到曲边四边形单元上,且可适用于局部网格加密时具有"悬挂节点"的非结构网格上的激波捕捉。 To achieve high precision and high resolution numerical result of Euler equations,the basic principle of discontinuous Galerkin method,the simple WENO limiter on triangular meshes and shock capturing method based on adaptive mesh refinement were introduced. The simple WENO limiter-discontinuous Galerkin method was applied to the curved quadrilateral element,and the adjacent elements of every element with the same coordinates of the Gauss integral points on the boundaries were found. The adaptive computation based on "trouble element"refinement was accomplished. Several benchmark test cases were computed. The numerical results show that the simple WENO limiter is appropriate for the curvilinear boundary quadrilateral element and for the shock capturing based on unstructured grids with hanging nodes.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第4期806-814,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 三峡大学人才科研启动基金(KJ2014B031)~~
关键词 间断GALERKIN方法 简单WENO限制器 EULER方程 自适应计算 曲边四边形单元 discontinuous Galerkin method simple WENO limiter Euler equations adaptive computation curvilinear boundary quadrilateral element
  • 相关文献

参考文献15

  • 1REED W H, HILL T R.Triangular mesh methods for the neutron transport equation:LA-UR-73-479[R].Los Alamos:Scientific Laboratory,1973.
  • 2COCKBURN B, SHU C W.The Runge-Kutta discontinuous Galerkin method for conservation laws V:Multidimensional systems[J].Journal of Computational Physics,1998,141(2):199-224.
  • 3BASSI F, REBAY S.A high order accurate discontinuous finite element method for the numerical solution of the compressible Navier Stokes equations[J].Journal of Computational Physics,1997,131(2):267-279.
  • 4COCKBURN B, SHU C W.The local discontinuous Galerkin method for time-dependent convection diffusion systems[J].SIAM Journal on Numerical Analysis,1998,35(6):2440- 2463.
  • 5舒其望.计算流体力学中的间断Galerkin方法述评(英文)[J].力学进展,2013,43(6):541-554. 被引量:11
  • 6COCKBURN B, KARNIADAKIS G,SHU C W.The development of discontinuous Galerkin methods[M]//COCKBURN B,KARNIADAKIS G,SHU C W.Discontinuous Galerkin methods:Theory,computation and applications.New York:Springer,2000:1-50.
  • 7COCKBURN B, SHU C W.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II:General framework[J].Mathematics of Computation,1989,52(186):411-435.
  • 8BISWAS R, DEVINE K D,FLAHERTY J.Parallel,adaptive finite element methods for conservation laws[J].Applied Numerical Mathematics,1994,14(s1-3):255-283.
  • 9BURBEAU A, SAGAUT P,BRUNEAU C H.A problem independent limiter for high order Runge Kutta discontinuous Galerkin methods[J].Journal of Computational Physics,2001,169(1): 111-150.
  • 10SURESH A, HUYNH H T.Accurate monotonicity preserving schemes with Runge Kutta time stepping[J].Journal of Computational Physics,1997,136(1):83-99.

二级参考文献89

  • 1贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 2REED W H, HILL T R. Triangular mesh methods for the neutron transport equation [R]. Technical Report LA - UR -73 -479, Los Alamos Scientific Laboratory; 1973.
  • 3HARTEN A. High resolution schemes for hyperbolic conser- vation laws [ J]. Journal of Computational Physics, 1983, 49 : 357 - 393.
  • 4张涵信.无波动、无自由参数的耗散差分格式.空气动力学学报,1986,:143-165.
  • 5QIU J, SHU C W. Hermite WENO schemes and their appli- cation as limiters for Runge - Kutta discontinuous Galerkin method : one dimensional case [ J], Journal of Computation- al Physics, 2003, 193 : 115- 135.
  • 6ADJERID S, DEVINE K, FLAHERTY J and KRIVODONO- VA L. A posteriori error estimation for discontinuous Galer- kin solutions of hyperbolic problems [ J]. Computer methods in applied mechanics and engineering, 2002, 191 : 1097 - 1112.
  • 7KRIVODONOVA L. Limiter for high - order discontinuous Galerkin methods [ J ]. Journal of Computational Physics, 2007, 226 : 879 - 896.
  • 8BARTH T, JESPERSON D. The design and application of upwind schemes on unstructured meshes[ A]. In 27th Aero- space Sciences Meeting[ C]. AIAA 89 - 0036, Reno, Ne- vada, 1989.
  • 9LUO H, BAUM J D, LOHNER R. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids [ J ]. Journal of Computational Physics, 2008, 227 : 8875 - 8893.
  • 10Arnold D N. 1982. An interior penalty finite elementmethod with discontinuous elements. SIAM Journal on Numerical Analysis, 39: 742-760.

共引文献16

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部