期刊文献+

基于奇异谱分析的空间环境数据插补方法 被引量:1

Gap filling method for space environment data based on singular spectrum analysis
下载PDF
导出
摘要 空间环境数据具有典型的非线性、非平稳特征,并经常包含有缺失数据,给预报模型的建立、预测以及物理过程的分析带来了一定的困难。为了实现对缺失数据的插补,基于奇异谱分析(SSA)迭代插补的思想,设计了一种能够适用于不同缺失数据分布的插补方案。该方案提取出原始时间序列中缺失数据分布数组,利用缺失数据分布数组生成交叉验证所用的测试数据集,并利用离散粒子群优化算法寻找SSA的2个关键性参数,即嵌入窗口长度和主成分个数。通过不同太阳活动年份实际观测的太阳风参数、地磁指数等实例验证了算法的有效性。 The space environment data is known to be nonlinear and non-stationary and often contains missing values,which brings great challenge to the model-building procedures,predictions and posterior analysis. To fill the data gaps,a new gap filling method based on the iterative singular spectrum analysis( SSA)algorithm was put forward. The new method considered the distribution of missing values by extracting a distribution array first and used the array to generate the test data set. The discrete particle swarm optimization algorithm was adapted to obtain the two key parameters of SSA,i. e. the embedded window size and the number of principal components. Taking the solar wind parameters and geomagnetic indices of different solar activity years as examples,the test results demonstrate that the filling method is effective.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第4期829-836,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 教育部新世纪优秀人才支持计划 中国科学院青年创新促进会(Y52133A23S)~~
关键词 奇异谱分析(SSA) 离散粒子群优化算法 数据插补 空间环境 时间序列 singular spectrum analysis(SSA) discrete particle swarm optimization algorithm gap filling space environment time series
  • 相关文献

参考文献25

  • 1BROOMHEAD D S, KING G P.Extracting qualitative dynamics from experimental data[J].Physica D,1986,20(2-3):217- 236.
  • 2GHIL M, ALLEN R M,DETTINGER M D,et al.Advanced spectral methods for climatic time series[J].Reviews of Geophysics,2002:40(1):3.1-3.41.
  • 3ZHIGLJAVSKY A. Singular spectrum analysis for time series: Introduction to this special issue[J].Statistics and Its Interface,2010,3(3):255-258.
  • 4SCHOELLHAMER D H. Singular spectrum analysis for time series with missing data[J].Geophysical Research Letters,2001,28(16):3187-3190.
  • 5SHEN Y, PENG F,LI B.Improved singular spectrum analysis for time series with missing data[J].Nonlinear Processes in Geophysics,2014,1(2):1947-1966.
  • 6GOLYANDINA N, OSIPOV E.The “Caterpillar”-SSA method for analysis of time series with missing values[J].Journal of Statistical Planning and Inference,2007,137(8):2642-2653.
  • 7KONDRASHOV D, GHIL M.Spatio-temporal filling of missing points in geophysical data sets[J].Nonlinear Processes in Geophysics,2006,13(2):151-159.
  • 8BECKERS J M, RIXEN M.EOF calculations and data filling from incomplete oceanographic datasets[J].Journal of Atmospheric and Oceanic Technology,2003,20(12):1839-1856.
  • 9KONDRASHOV D, SHPRITS Y,GHIL M.Gap filling of solar wind data by singular spectrum analysis[J].Geophysical Research Letters,2010,37(15):1-6.
  • 10KONDRASHOV D, DENTON R,SHPRITS Y Y,et al.Reconstruction of gaps in the past history of solar wind parameters[J].Geophysical Research Letters,2014,41(8):2702-2707.

二级参考文献7

  • 1Beckers J M, Rixen M. EOF calculations and data filling from incomplete oceanographic datasets [J]. Journal of Atmospheric and Oceanic Technology ,2003,20(12) : 1839-1856.
  • 2王桂华,刘增宏,许建平.利用Argo资料重构太平洋三维温盐场和流场[A].见:许建平主编.Argo应川研究论文集[C].北京:海洋出版社,2006,16-25.
  • 3Kondrashov D, Ghil M. Spatio-temporal filling of missing points in geophysical data sets[J]. Nonlinear Processes in Geophysics ,2006,13(2):151-159.
  • 4Kondrashov D, Ghil M. Reply to T Schneider' s comment on "Spatio-temporal filling of missing points in geophysical data sets" [J]. Nonlinear Processes in Geophysics ,2007,14(1) :3-4.
  • 5Broomhead D S, King G P. Extracting qualitative dynamics from experimental data[J]. Physica D, 1986,20(2/3) :217-236.
  • 6江志红,丁裕国,屠其璞.基于PC-CCA方法的气象场资料插补试验[J].南京气象学院学报,1999,22(2):141-148. 被引量:11
  • 7江志红,丁裕国,屠其璞.气象场序列几种插补方案的对比试验[J].南京气象学院学报,1999,22(3):352-359. 被引量:10

共引文献32

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部