期刊文献+

线性差分方程亚纯解的若干性质

Some properties of the meromorphic solutions of linear difference equation
下载PDF
导出
摘要 研究了多项式系数差分方程P_n(z)f(z+n)+…+P_1(z)f(z+1)+P_0(z)f(z)=0和P_n(z)f(z+n)+…+P_1(z)f(z+1)+P_0(z)f(z)=F(z)的亚纯解的增长性、零点收敛指数和小函数之间的关系,得到的结果推广了相关的结论. We investigate the relationship between function of small growth and the order,the exponent of convergence of zeros of the meromorphic solution of difference equations Pn(z)f(z+n)+… +P1(z)f(z+1)+P0(z)f(z)= 0 and Pn(z)f(z+n)+… +P1(z)f(z +1)+P0(z)f(z)= F(z),where F(z),P0(z),…,Pn(z)are polynomials,which generalize the related results.
作者 杜云飞 赵明
出处 《河南工程学院学报(自然科学版)》 2016年第2期76-80,共5页 Journal of Henan University of Engineering:Natural Science Edition
基金 国家自然科学基金(11171013 11371225)
关键词 差分方程 亚纯解 小函数 difference equation meromorphic solution small function
  • 相关文献

参考文献12

  • 1YANGCC,YIHX.UniquenessTheoryofMeromorphicFunctions[M].TheNetherlands:KluwerAcademicpublishers,2003.
  • 2LAINEI.NevanlinnaTheoryandComplexDifferentialEquations[M].Berlin:WalterdeGruyter,1993.
  • 3HAYMANW K.MeromorphicFunctions[M].Oxford:ClarendonPress,1964.
  • 4LAINEI,YANGCC.Clunietheoremsfordifferenceandqdifferencepolynomials[J].JournaloftheLondonMathematicalSociety,2007(76):556-566.
  • 5BERGWEILERW,LANGLEYJK.Zerosofdifferenceofmeromorphicfunctions[J].MathematicalProceedingsoftheCambridgePhilosophicalSociety,2007(142):133-147.
  • 6ABLOWITZM,HALBURDRG,HERBSTB.OntheextensionofPainlevépropertytodifferenceequations[J].Nonlinearity,2000(13):889-905.
  • 7ISHIZAKIK,YANAGIHARAN.WimanValironmethodfordifferenceequations[J].NagoyaMathematicalJournal,2004(175):75-102.
  • 8HALBURDRG,KORHONENRJ.Differenceanalogueofthelemmaonthelogarithmicderivativewithapplicationstodifferenceequations[J].JournalofMathematicalAnalysisandApplications,2006(314):477-487.
  • 9LIS,GAOZS.Finiteordermeromorphicsolutionsoflineardifferenceequations[J].ProceedingsoftheJapanAcademy,SeriesA,2011(87):73-76.
  • 10CHIANGYM,FENGSJ.OntheNevanlinnacharacteristicanddifferenceequationsinthecomplexplane[J].TheRamanujanJournal,2008(16):105-129.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部