期刊文献+

自适应灰关联算法的动力装置故障诊断 被引量:2

Fault Diagnosis for Power Plant Based on Adaptive Gray Relation Algorithm
下载PDF
导出
摘要 动力装置在长期运行后,其部件性能会逐渐衰退,容易导致各种故障发生。因此,对装置进行一定的气路数据测量,进而对装置进行诊断、预测具有重要意义。提出一种自适应灰色关联算法的动力装置故障诊断算法,通过对故障数据的关联计算处理,实现了动力装置故障模式的诊断。 Components in a power plant may degrade during operation,leading to serious faults.It is therefore essential to monitor gas-path measurement in a power plant,and carry out fault diagnosis for its components.For this purpose,a fault diagnostic method for power plant based on adaptive gray relation algorithm is proposed.By correlating calculation of the gas-path measurement,accurate recognition of fault patterns can be achieved.
出处 《上海电机学院学报》 2016年第2期81-87,共7页 Journal of Shanghai Dianji University
基金 上海电机学院大学生科研创新项目资助(A1-5701-15-012-01-066)
关键词 灰关联算法 动力装置 故障诊断 故障识别 gray relation algorithm power plant fault diagnosis fault recognition
  • 相关文献

参考文献24

  • 1占健,吴斌,王加祥.基于支持向量机的齿轮箱齿轮故障诊断[J].上海电机学院学报,2014,17(1):5-10. 被引量:4
  • 2YING Yulong, CAO Yunpeng, LI shuying, et al.Nonlinear steady-state model based gas turbinehealth status estimation approach with improvedparticle swarm optimization algorithm [J]. MathematicalProblems in Engineering,2015 : 940757.
  • 3杨兵,丁辉,罗为民,张小飞.基于知识库的变压器故障诊断专家系统[J].中国电机工程学报,2002,22(10):121-124. 被引量:55
  • 4WANG C C,KAN G Y,SHEN P C ,et al. Applicationsof fault diagnosis in rotating machinery byusing time series analysis with neural network[J],Expert Systems with Applications,2 0 1 0 ,37: 1696-1702.
  • 5SAMANTA B,A1-BALUSHI K R. Artificial neuralnetwork based fault diagnostics of rolling elementbearings using time-domain features[J]. MechanicalSystems and Signal Processing, 2003, 17 ( 2 ) :317-328.
  • 6JAY ASW AL P , VERMA S N’ WADHWANI A K.Development of EBP-artificial neural network expertsystem for rolling element bearing fault diagnosis[J]. Journal of Vibration & Control, 2 0 1 1,1 7(8) : 1131-1148.
  • 7Dong S , Xu X , Liu J , et al. Rotating machine faultdiagnosis based on locality preserving projectionand back propagation neural network-support vectormachine model [J]. Measurement and Control,2 015,48(7 ) : 211-216.
  • 8AO H L , CHENG J , YANG Y , et aL The supportvector machine parameter optimization methodbased on artificial chemical reaction optimization algorithmand its application to roller bearing faultdiagnosis [J] . Journal of Vibration and Control,2 013 : 1077546313511841.
  • 9ZHANG X L , CHEN X F , HE Z J. Fault diagnosisbased on support vector machines with parameteroptimization by an ant colony algorithm [J] . Proceedingsof the Institution of Mechanical Engineers,Part C : Journal of Mechanical EngineeringScience,2 010,22 4 (1) : 217-229.
  • 10HSU C W,LIN C J. A comparison of methods formulticlass support vector machines [J]. IEEETransactions on Neural Networks, 2002, 13 ( 2 ) :415-425.

二级参考文献30

共引文献186

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部