期刊文献+

Global Avalanche Characteristics of Boolean Functions by Concatenation

Global Avalanche Characteristics of Boolean Functions by Concatenation
下载PDF
导出
摘要 In order to measure the correlation propeties of two Boolean functions,the global avalanche characteristics of Boolean functions constructed by concatenation are discussed,i.e.,f_1‖f_2and f_1‖f_2‖f_3‖f_4.Firstly,for the function f = f_1‖f_2,the cross-correlation function of f_1,f_2 in the special condition are studied.In this case,f,f_1,f_2 must be in desired form.By computing their sum-of-squares indicators,the crosscorrelation function between f_1,f_2 is obtained.Secondly,for the function g = f_1‖f_2‖f_3‖f_4,by analyzing the relation among their auto-correlation functions,their sum-of-squares indicators are investigated.Based on them,the sum-of-squares indicators of functions obtained by Canteaut et al.are investigated.The results show that the correlation property of g is good when the correlation properties of Boolean functions f_1,f_2,f_3,f_4 are good. In order to measure the correlation propeties of two Boolean functions,the global avalanche characteristics of Boolean functions constructed by concatenation are discussed,i.e.,f_1‖f_2and f_1‖f_2‖f_3‖f_4.Firstly,for the function f = f_1‖f_2,the cross-correlation function of f_1,f_2 in the special condition are studied.In this case,f,f_1,f_2 must be in desired form.By computing their sum-of-squares indicators,the crosscorrelation function between f_1,f_2 is obtained.Secondly,for the function g = f_1‖f_2‖f_3‖f_4,by analyzing the relation among their auto-correlation functions,their sum-of-squares indicators are investigated.Based on them,the sum-of-squares indicators of functions obtained by Canteaut et al.are investigated.The results show that the correlation property of g is good when the correlation properties of Boolean functions f_1,f_2,f_3,f_4 are good.
出处 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2016年第3期91-96,共6页 哈尔滨工业大学学报(英文版)
基金 Sponsored by the National Natural Science Foundations of Anhui Higher Education Institutions of China(Grant No.KJ2014A220,KJ2014A231) the Anhui Provincial Natural Science Foundation(Grant No.1608085MF143) the Key Program in the Youth Elite Support Plan in Universities of Anhui Province(Grant No.gxyq ZD2016112)
关键词 BOOLEAN FUNCTION CROSS-CORRELATION FUNCTION GLOBAL AVALANCHE characteristics sum-of-squaresindicator Boolean function cross-correlation function global avalanche characteristics sum-of-squares indicator
  • 相关文献

参考文献4

二级参考文献33

  • 1WENG GuoBiao,FENG RongQuan,QIU WeiSheng,ZHENG ZhiMing.The ranks of Maiorana-McFarland bent functions[J].Science China Mathematics,2008,51(9):1726-1731. 被引量:1
  • 2常祖领,陈鲁生,符方伟.PS类Bent函数的一种构造方法[J].电子学报,2004,32(10):1649-1653. 被引量:7
  • 3孟庆树,张焕国,王张宜,覃中平,彭文灵.Bent函数的演化设计[J].电子学报,2004,32(11):1901-1903. 被引量:16
  • 4张文英,武传坤,于静之.密码学中布尔函数的零化子[J].电子学报,2006,34(1):51-54. 被引量:16
  • 5N. T. Courtois, W. Meier. Algebraic attacks on stream ciphers with linear feedback [ A ]. Advances in Cryptology-EUROCRYPT 2003 [ C ]. LNCS 2656, Berlin: Springer-Verlag, 2003, pp. 346 - 359.
  • 6W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of Boolean functions[ A]. In Advances in Cryptology-EUROCRYPT, 2004[ C]. LNCS 3027, Berlin: SpringerVerlag, 2004, pp. 474 - 491.
  • 7C. Carlet, D. K. Dalai, K. C. Gupta, and S. Maitra. Algebraic immunity for cryptographically significant Boolean functions: analysis and comtruction [ J ].IEEE. Trans. Inform. Theory, 2006,52(7) :3105 - 3121.
  • 8O. S. Rothaus. On bent functions [ J ]. Combin. Theory Ser A, 1976,20:300 - 305.
  • 9T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic applications [ J ].IEEE Trans. Inform. Theory, 1984,30(5) :776 - 780.
  • 10G. Xiao, J. Massey. A spectral characterization of correlationimmune functions [ J]. IEEE Trans Inform. Theory, 1988,34 (3) :569 - 571.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部