摘要
目前越来越多的消费者通过电子商务平台购买商品,但是网络购物系统提供大量的商品信息,这使得顾客无法快速地找到自己所需的商品。利用关联规则算法完成商品的智能推荐,通过对用户的历史购买记录进行分析,挖掘出客户的购买兴趣,向用户推荐相应的关联购买商品。实验仿真结果表明,该文提出的算法是有效的、可行的,为用户购买商品提供一定的辅助决策作用。
At present, more and more consumers buy goods through the electronic commerce platform, but the online shopping system provides a large of information, which makes the customer can not quickly find their desired goods. Proposes an algorithm of intelligent recommendation based on the association rule. That through the analysis of the user's historical purchase records, mining the customer's purchase interest, to the user to recommend appropriate related to buy goods. Experiments demonstrate that algorithm is applicable and effective, and it provides a certain assistant decision for the purchase of goods.
出处
《现代计算机》
2016年第7期25-27,共3页
Modern Computer
基金
咸阳师范学院大学生创新训练项目(No.2015005)
陕西省大学生创新训练项目(No.2097)
关键词
关联规则
商品推荐
数据挖掘
Association Rules
Commodity Recommendation
Data Mining