摘要
讨论了三类包含Euler函数的方程x-ψ(x)=2^(ω(x)),x-ψ(ψ(x))=2^(ω(x))与ψ(x^k)=2^(ω(x^k))的可解性,利用初等方法给出这三类方程的所有正整数解,其中ψ(x)为Euler函数,ω(x)为x的相异素因子个数.
The solvability of three kinds of equations involving Euler functionsx-φ(x) =2^ω(x),x-φ(φ(x)) = 2^ω(x)andφ(x^k) = 2^ω(x^k)were discussed,and all the positive integer solutions of theirs were given by using elementary method,where φ(x) is Euler function andω(x) is the number of distinct prime factors of x.
出处
《数学的实践与认识》
北大核心
2016年第8期287-291,共5页
Mathematics in Practice and Theory
关键词
EULER函数
可解性
正整数解
Euler function
solvability
positive integer solution