期刊文献+

一类常微分方程的伯恩斯坦定理 被引量:1

On Bernstein'Theorem to a Class of Ordinary Differential Equations
下载PDF
导出
摘要 本文对一类二阶常微分方程u″=exp(-u+1/2tu′),u=u(t)在一些条件下解的表达式进行探讨,若u′(0)=0,那么可得到方程的解一定是二次多项式形式,进而推动平均曲率流的自相似膨胀解的刚性定理这一新问题的研究进程。 For a class of second order ordinary differential equations u″=exp(-u+1/2tu′),u=u(t),under some condition,the expressions of solutions of these equations are investigated.If u′(0)=0,it is shown that the solution of the equation has the form of a quadratic multinomial.This result may have a positive effect in finding out the rigidity theorem related to the self-similar expansion solution of the mean curvature flows.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2016年第1期102-105,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11261008) 广西自然科学基金资助项目(2012GXNSFBA053009)
关键词 平均曲率流 自相似解 解析解 mean curvature flow self-similar solution analytic solution
  • 相关文献

参考文献7

  • 1JOYCE D,LEE Y I,TSUI M P.Self-similar solutions and translating solitons for Lagrangian mean curvature flow[J]. JDiff Geom,2010,84(1) :127-161.
  • 2ANCIAUX H.Construction of Lagrangian self-similar solutions to the mean curvature flow in Cw [J].Geom Dedicata,2006,120(1):37-48. DOI: 10.1007/sl0711-006-9082-z.
  • 3CHAU A,CHEN Jingyi, YUAN Yu. Rigidity of entire self-shrinking solutions to curvature flows[J].J Reine AngewMath,2012,2012(664) :229-239. DOI: 10.1515/CRELLE.2011.102.
  • 4SMOCZYK K. Self-shrinkers of the mean curvature flow in arbitrary codimension[ J J. Int Math Res Not, 2005, 2005(48):2983-3004. DOI: 10.1155/IMRN.2005.2983.
  • 5DING Qi, XIN Yuanlong. The rigidity theorems for Lagrangian self-shrinkers [J]. J Reine Angew Math,2014,2014(692);109-123. D01:10.1515/crell^2012-0081.
  • 6XU Ruiwei,CAO Linfen. Complete self-shrink solutions for lagrangian mean curvature flow in pseudo-euclidean space[J]. Abstract and Applied Analysis,2014,2014 : 196751.DOI: 10.1155/2014/196751.
  • 7HUANG Rongli,WANG Zhizhang.On the entire self-shrinking solutions to Lagrangian mean curvature fIow[J].CalcVar Partial Differential Equations,2011,41(3/4) *321-339. DOI: 10.1007/s00526-010-0364-9.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部