期刊文献+

SnAgCu无铅焊点低周疲劳行为研究(英文)

Low Cycle Fatigue Behavior of SnAgCu Solder Joints
原文传递
导出
摘要 在25℃下利用单轴微力疲劳试验机对96.5Sn-3Ag-0.5Cu无铅焊点进行不同频率(1-10 Hz)和应变范围(2%-8%)的低周疲劳试验。结果表明,不同应变范围条件下无铅焊点的低周疲劳行为符合Coffin-Manson方程。频率修正的Coffin-Manson方程可以用来描述频率对无铅焊点低周疲劳寿命的影响。疲劳裂纹首先在焊点边缘的钎料与金属间化合物(IMC)之间的界面处萌生,随后,裂纹沿近IMC层的钎料内进行扩展。不同频率条件下焊点的断口形貌主要分为3个特征区域:裂纹萌生区、裂纹扩展区和最终断裂区。随着频率的升高,焊点的断裂机制由沿晶断裂向穿晶断裂转变。 Low cycle mechanical fatigue tests on 96.5Sn-3Ag-0.5Cu lead-free solder joints were carried out using a micro-uniaxial fatigue testing system at 25 °C with different frequencies(1-10 Hz) and a wide range of strain(2%-8%). The results show that the low cycle fatigue(LCF) life of the solder joint follows the Coffin-Manson equation in different strain ranges. Frequency-modified Coffin-Manson equation can describe the frequency effect on the fatigue life of lead-free solder joints. The analysis of failure process show that the fatigue cracks initiate at the interfaces between the solder and inter-metallic compound(IMC) around the edge of the joints, and then propagate within the solder along the solder/IMC interfaces proximately. Fracture morphologies of solder joints under different frequencies mainly consist of an initiated region, a propagation region and a final fracture region. The fracture mechanism of the final fracture region transforms from inter-granular fracture to trans-granular fracture with increasing of frequency.
机构地区 北京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第4期829-835,共7页 Rare Metal Materials and Engineering
基金 National Nature Science Foundation of China(51275007) Beijing Nature Science Foundation(2112005)
关键词 低周疲劳 无铅焊点 可靠性 裂纹萌生 裂纹扩展 low cycle fatigue lead-free solder joint reliability crack initiation crack propagation
  • 相关文献

参考文献18

  • 1Plumbridge W J. JMater Sci[J], 1996, 31(10): 2501.
  • 2Lee J G, Subramanian K N. JElectron Mater[J], 2003, 32(6): 523.
  • 3Zou H. Journal of Civil Aviation University of China[J], 2007, 5(3): 49 (in Chinese).
  • 4Xia Z D, Lei Y P, Shi Y W. Electronics Process Technology [J], 2002, 23(5): 185.
  • 5Andersson C, Lai Z, Liu J. Materials Science and Engineering [J], 2005, 394:20.
  • 6Liu X W, Plumbridge W J. Journal of Electronic Materials[J], 2007, 36(9): 1111.
  • 7Miao H W, Duh J G, Chiou B S. J Mater Sci-Mater[J], 2000, 11 (8): 609.
  • 8Pang H L J, Tan K H, Shi X Q et al. Mater Sci Eng A[J], 2001, 307(1-2): 42.
  • 9Pang J H L, Low T H, Xiong B Set aI. Thin Solid Films[J], 2004, 462:370.
  • 10Kariya Y, Otsuka M J. Electron Mater[J], 1998, 27(11): 1229.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部