期刊文献+

压应力对Sm-Fe-B磁致伸缩性能的影响(英文)

Effects of Compressive Stress on the Magnetostrictive Characteristics of Sm-Fe-B Films
原文传递
导出
摘要 利用特制夹具,使玻璃衬底在镀膜过程中受到不同应力作用,镀膜结束后,当玻璃衬底从夹具取下后,利用其恢复到原来状态,可以对稀土Sm-Fe-B薄膜产生压应力作用。通过调整夹具使衬底具有不同的预应力,可得到受到玻璃衬底不同压应力作用的薄膜样品。利用LK-G150激光微位移传感器与交变梯度磁强计(AGM)分别测试薄膜悬臂梁自由端偏转量与磁滞回线,以研究具有不同压应力对薄膜的磁致伸缩性能的影响,并且利用磁力显微镜(MFM)测试了薄膜样品垂直表面的磁畴分布情况。实验结果表明:受到压应力作用的薄膜易磁化轴都位于膜面内,以面内各向异性为主,磁畴结构基本分布在面内。随着压应力的增加,易磁化轴由膜面内的短轴转向膜面内的长轴,这一转变有利于器件的设计,但是磁畴在垂直膜面方向略有提高,薄膜的低场磁致伸缩性能也随着压应力的增大而有显著提高。 A set of Sm-Fe-B films with different compressive stresses were prepared on substrates with different prestrains by ion beam spurting deposition(IBSD). The influence of compressive stress on the magnetic anisotropy and the magnetostriction in sputter-deposited amorphous Sm-Fe-B films were investigated. Films affected by compressive stress all show in-plane anisotropy and easy axis along the direction of stress is induced in the film with compressive stress increasing. Magnetostriction of Sm-Fe-B films affected by compressive stress is improved in low magnetic field while saturation of magnetostriction decreases slightly. At the same time, the magnetostriction rises rapidly in low field measured in a field parallel to the film plane at room temperature with the growth of compressive stress. It is also found that the magnetic domain component which is perpendicular to the film plane increases on a small scale, though the magnetic domain or the magnetic domain component parallel to film plane still exist dominantly.
机构地区 福州大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第4期849-852,共4页 Rare Metal Materials and Engineering
基金 Foundation of Natural Science of Fujian Province(2010J01278) Innovation Fund of Fujian Histron for Fuzhou University(2013)
关键词 Sm-Fe-B薄膜 压应力 磁致伸缩特性 磁畴 Sm-Fe-B film compressive stress magnetostrictive characteristics magnetic domain
  • 相关文献

参考文献11

  • 1Takeuchi M, Matsummura Y, Uchida H. J Japan Inst Metal[J], 2005, 69(8): 667.
  • 2Peng B, Zhang W L, Jiag H C et al. Phys B[J], 2010, 405:916.
  • 3Garcia D, Munoz J L, Kurlyandskaya Get al. J Magn Magn Mater[J], 1999, 191:339.
  • 4Mandal K, Vazquez M, Garcia D et al. J Magn Magn Mater[J], 1999, 196:259.
  • 5Lim S H et aL JMagn Magn Mater[J], 1988, 189(1): 1.
  • 6Hiroyuki Wakiwaka, Kazuyuki Ohtake, Naoki Itoh et al. Materials Science Forum[J], 2011,670:82.
  • 7Li Siwen, Zhou Baiyang, Weng Zhangzhao. Journal of Functional Materials and Devices[J], 2012, 18(2): 165.
  • 8Hoffman R W. Physics of Thin Films, VoL3[M]. New York: Academic, 1966:211.
  • 9Wakiwaka H. Sensor Letters[J], 2009(7): 240.
  • 10Klokholm E. IEEE Transactions on Magnetics[J], 1976(12): 819.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部