期刊文献+

直流磁场对Mg_(97)Y_2Cu_1合金凝固组织、结晶织构及力学性能的影响 被引量:1

Effect of DC Magnetic Field on Solidified Structure, Crystal Texture and Mechanical Properties of Mg_(97)Y_2Cu_1 Alloy
原文传递
导出
摘要 研究了0-1.2 T的直流磁场对长周期结构增强Mg97Y2Cu1合金凝固组织、结晶织构及力学性能的影响。结果表明:直流磁场可以细化合金的初生相,减少α-Mg基体中Y元素的含量。随着磁场强度的增加,{1 1 2 0}面织构先加强后减弱,其转折点为0.9 T,{10 10}面织构逐渐增强;合金的铸态抗拉强度和伸长率总体上逐渐提高,当磁场强度为0.9 T时,合金的综合力学性能最好,其抗拉强度和伸长率较无磁场处理的试样相比分别提高了96.6%和61.1%。 Solidified structure, crystal texture and mechanical properties of Mg97Y2Cu1 alloy reinforced by long period ordered structure under DC magnetic field(0-1.2 T) were studied. The results show that primary grain size and content of Y in matrix of the alloy decrease with DC magnetic field treatment. With the increase of magnetic field strength, the { 1 1 2 0 } plane texture rises firstly, then weakens, and the turning point is 0.9 T; while the { 1 0 1 0 } plane texture rises gradually. The strength and elongation of the alloy increase gradually. When the magnetic field strength is 0.9T, comprehensive mechanical properties of the alloy are the best. Tensile strength and elongation of the alloy are increased by up to 96.6% and 61.1%, respectively, compared with the sample without treatment.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第4期934-939,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51261026) 航空科学基金(20125356009)
关键词 直流磁场 Mg97Y2Cu1合金 长周期结构 结晶织构 力学性能 DC magnetic field Mg97Y2Cu1 alloy long period ordered structure crystal texture mechanical properties
  • 相关文献

参考文献17

二级参考文献114

  • 1C.Zhao, J.Vleugels.Alumina/Ce-Tzp Functionally Graded Materials by Electrophoretic Deposition[J].材料科学与工程学报,2000,20(z1):250-254. 被引量:20
  • 2晋芳伟,任忠鸣,任维丽,邓康,钟云波.梯度强磁场下Al-18%Si合金中初晶硅的细化[J].金属学报,2007,43(5):521-528. 被引量:13
  • 3[1]Yang C J, Park E B. The effect of magnetic field treatment on the enhanced exchange coupling of a Nd2Fe14 B/Fe3B magnet [J]. J Magn Magn Mater,1997, 166: 243-248.
  • 4[4]Hao X J, Ohtsuka H, Rango P D, et al. Quantitative characterization of the structural alignment in Fe-0.4Calloy transformed in high magnetic field[J]. Mater Trans, 2003, 44(1): 211-213.
  • 5[5]Kakeshita T, Fukuda T. Martensitic transformations in some ferrous and non-ferrous alloys under high mag netic field[A]. Asai S. The 3rd Int Symp on EPM [C]. Nagoya, Japan: ISIJ, 2000. 584-589.
  • 6[6]Choi J K, Ohtsuka H, Xu Y, et al. Effects of a strong magnetic field on the phase stability of plain carbon steels[J]. ScriptaMater, 2000, 43:221-226.
  • 7[7]Ohtsuka H, Xu Y, Choi J K, et al. Diffusional transformation behavior and structure in high magnetic field [A]. Asai S. The 3rd Int Symp on EPM[C]. Nagoya, Japan: ISIJ, 2000. 596-599.
  • 8[8]Yamamoto I, Ishikawa K, Mizusaki S, et al. Magneto-thermodynamic effects in chemical reactions[J]. Jpn J Appl Phys, 2002, 41(1): 416-424.
  • 9[9]Yamaguchi M, Yamamoto I, Mizusaki S, et al. Magnetic field effect on the heat of reaction in metal-hydrogen systems[J]. Journal of Alloys and Compounds, 2002, 330-332: 48-51.
  • 10[10]Jian Z Y, Chang F E, Ma W H, et al. Nucleation and undercooling of metal melt[J]. Science in China (Series E), 2000, 43(2): 113-119.

共引文献288

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部