期刊文献+

具备原位合成Al_2O_3的WC复合粉末与涂层的设计及制备

Design and Preparation of WC Composite Powders and Coatings with in-situ Synthesis Al_2O_3
原文传递
导出
摘要 利用球磨法将Al粉添加到亚微米结构WC-12Co粉末中,设计并制备了具有Al2O3原位合成的纳米结构WC-Co-Al粉末。XRD分析显示球磨10、30和50 h后的粉末中WC平均晶粒尺寸为93.1、39.0和44.8 nm。超音速火焰(HVOF)喷涂时,WC-Co-Al粉末比未球磨的WC-12Co粉末扁平化更好,涂层孔隙率为0.57%,比WC-12Co涂层(1.62%)更低。粉末中的Al元素与氧气反应原位生成了Al_2O_3硬质陶瓷颗粒,有效抑制了WC的氧化脱碳。WC-Co-Al涂层HV_(0.1)显微硬度为12.98±0.73 GPa,比WC-12Co涂层提高约36%,这得益于Al_2O_3颗粒的增强效应,WC晶粒纳米化和孔隙率降低。 Nanostructured WC-Co-Al powders with in-situ synthesis Al2O3 were synthesized from submicron structured WC-12 Co powder and Al powder using a ball-milling method. XRD analysis shows that the average sizes of WC grains are 93.1, 39.0 and 44.8 nm after milling for 10, 30 and 50 h, respectively. When they are sprayed by high velocity oxygen fuel(HVOF) thermal spraying, WC-Co-Al powders are more easily flattened than WC-12 Co powder without ball-milling. The porosity of WC-Co-Al coating is only 0.57% which is much lower than that of WC-12 Co coating with a value of 1.62%. During spraying Al reacts with oxygen, which effectively inhibits the decarburization of WC, and Al2O3 hard ceramic particles are in situ generated in coatings. The HV0.1 microhardness of WC-Co-Al coating is 12.98±0.73 GPa, about 36% higher than that of WC-12 Co coating, which is mainly owing to the enhancement effect of Al2O3 particles, nanocrystallization of WC phase and lower porosity.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2016年第4期1012-1017,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51375332) 天津市自然科学基金(12JCYBJC12300)
关键词 纳米结构 WC-Co-Al 超音速火焰 Al2O3原位合成 涂层 nanostructured WC-Co-Al HVOF in-situ synthesis Al2O3 coatings
  • 相关文献

参考文献27

  • 1Li C J, Yang G J. IntJRefractMetH[J], 2013, 39:2.
  • 2Z6rawski W. Surf Coat Technol[J], 2013, 220:276.
  • 3Soares E, Malheiros L F, Sacramento Jet al. d Am Ceram Soc[J], 2012, 95(3): 951.
  • 4Venter A M, Oladijo O P, Luzin Vet al. Thin Solid Films[J], 2013, 549:330.
  • 5Ji G C, Wang H T, Chen X et al. Surf Coat Technol[J], 2013, 235:536.
  • 6FuYingqing(傅迎庆),ZhouFeng(周峰),GaoYang(高阳)et al.稀有金属材料与工程[J],2007,36(S2):731.
  • 7Yang Q, Senda T, Ohmori A. Wear[J], 2003, 254:23.
  • 8Sahraoui T, Guessasma S, Jeridane M A et al. Mater Des[J], 2010, 31:1431.
  • 9Wood R J K. Int JRefract Met H[J], 2010, 28:82.
  • 10姬寿长,李争显,杜继红,查柏林,黄春良,王宝云,罗小峰,华云峰,王彦锋.Ti6Al4V合金表面超音速火焰喷涂WC-12Co涂层组织及相分析[J].稀有金属材料与工程,2012,41(11):2005-2009. 被引量:25

二级参考文献12

  • 1陶凯,崔华,周香林,张济山.超音速火焰(HVOF)喷涂过程中颗粒行为数值模拟的研究进展[J].材料导报,2006,20(4):112-116. 被引量:9
  • 2马壮,曹素红,王富耻,柳彦博,肖雄.基体表面粗糙度对HVOF喷涂WC-Co粒子变形的影响[J].北京理工大学学报,2006,26(4):373-376. 被引量:12
  • 3Yuan Xiaojing(袁晓静),Wang Hangong(王汉功),Zha Bailin(查柏林)et a1.料科学与工程学报[J].2004,22(2):203.
  • 4Zha Bailin(查柏林),Wang Hangong(王汉功)et a1.材料保护[J].2001,34(4):28.
  • 5Zha Bailin(查柏林),Wang Hangong(王汉功)eta1.材料保护[J].2001,34(4):10.
  • 6Zhang Jingguo(张敬国).WC-17Co热喷涂粉木及耐磨涂层制备的研究[D].Changsha:Central South University,2005.
  • 7Zha Bailin(查柏林),Wang Hangong(王汉功)et a1.云南大学学报[J].2002,24(1A):193.
  • 8Stewart D A, Shipway P H, McCartney D G. Acta Mater[J]. 2002, 48:1593.
  • 9Verdon C, Karimi A, Martin J L. Materials Science and EngineeringA[J]. 1998, 246:11.
  • 10MichaelVSwain.TranslatedbyGuo Jingkun(郭景坤).陶瓷的结构与性能[M].Beijing:Science Press,1998:168.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部