期刊文献+

β-Ga2O3∶Cr^3+近红外长余辉纳米颗粒的制备及发光性能 被引量:3

Synthesis and Photoluminescence Properties of β-Ga_2O_3∶ Cr^(3+) Persistent Luminescence Nanoparticles with Near-infrared Afterglow
下载PDF
导出
摘要 以三乙二醇为表面配体,利用沉淀法制备了β-Ga_2O_3∶Cr^(3+)近红外(NIR)长余辉纳米颗粒.考察了反应条件对β-Ga_2O_3∶Cr^(3+)的发光性能和晶体结构的影响,并初步探讨了其NIR余辉发光机理.结果表明,当溶液的p H值为7,煅烧温度为700℃时,可获得高纯度的β-Ga_2O_3∶Cr^(3+)纳米颗粒,其平均粒径为30 nm,最大余辉发射波长可调控为750 nm,NIR余辉发光时间长于384 h.本方法得到的β-Ga_2O_3∶Cr^(3+)长余辉纳米颗粒不仅尺寸小,而且NIR余辉时间长,发射波长可调控,在低背景噪音的深组织活体成像中具有潜在的应用前景. Cr3+doped gallium oxide( β-Ga_2O_3∶ Cr3+) nanoparticles with near infrared( NIR) persistent luminescence properties were prepared by a facile precipitation method with triethylene glycol as a surface ligand.The persistent luminescence properties and crystal structure of the Ga_2O_3∶ Cr3+nanoparticles highly depended on p H value of the reaction solution and the sintering temperature. The experimental results showed that pureβ-Ga_2O_3∶ Cr3+nanocrystal with small grain size( ca. 30 nm) was obtained after p H value of the reaction solution was adjusted to 7 with ammonium hydroxide,and calcined in air at 700 ℃ for 3 h. The maximum afterglow emission wavelength of the β-Ga_2O_3∶ Cr^(3+)nanoparticles was 750 nm,which was controlled by the reaction conditions. The NIR afterglow time of the β-Ga_2O_3∶ Cr3+nanoparticles was estimated to be longer than 384 h. The β-Ga_2O_3∶ Cr3+ persistent luminescence nanoparticles with small size,long NIR afterglow time and controllable emission band have great potential application in low background noise and deep tissue in-vivo imaging.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2016年第5期810-816,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21565017) 新疆维吾尔自治区高校科研计划项目(批准号:XJEDU2014I038) 喀什大学校内课题基金(批准号:14-2500)资助
关键词 氧化镓 纳米颗粒 长余辉发光 近红外 光学成像 Gallium oxide Nanoparticles Persistent luminescence Near-infrared afterglow Optical imaging
  • 相关文献

参考文献36

  • 1Smet P. F. , Poelman D. , Hehlen M. P. , Opt. Mater. Express, 2012, 2(4) , 452-454.
  • 2Lastusaari M. , Laamanen T. , Malkamaki M. , Eskola K. O. , Kotlov A. , Carlson S. , Welter E. , Brito H. F. , Bettinelli M. , Jungner H. , Hfils~i J. , Eur. J. Mineral. , 2012, 24(5), 885-890.
  • 3Zuo Y. Y. ,Chen X. , Liu X. B. , Chem. Res. Chinese Universities, 2015, 31(3) , 427-429.
  • 4Matsuzawa T. , Aoki Y. , Takeuchi N. , Murayama Y. , J. Electrochem. Soc. , 1996, 143 (8) , 2670-2673.
  • 5van den Eeckhout K. , Smet P. F. , Poelman D. , Materials, 2010, 3(4) , 2536-2566.
  • 6van den Eeckhout K. , Poelman D. , Smet P. , Materials, 2013, 6(7), 2789-2818.
  • 7Pan Z. , Lu Y. Y. , Liu F. , Nat. Mater. , 2012, 11 ( 1 ), 58-63.
  • 8BUnzli J. C. G., Eliseeva S. V., Chem. Sci., 2013, 4(5), 1939-1949.
  • 9Singh S. K., RSC Adv. , 2014, 4( 102), 58674-58698.
  • 10Maldiney T. , Viana B. , Bessibre A. , Gourier D. , Bessodes M. , Scherman D. , Richard C. , Opt. Mater. , 2013, 35( 10), 1852- 1858.

二级参考文献42

  • 1Welsher K.,Sherlock S.P.,Dai H.J.,Proc.Natl.Acad.Sci.USA,2011,108(22),8943-8948.
  • 2Chen G.C.,Tian F.,Zhang Y.,Zhang Y.J.,Li C.Y.,Wang Q.B.,Adv.Funct.Mater.,2014,24(17),2481-2488.
  • 3Li C.Y.,Zhang Y.J.,Wang M.,Zhang Y.,Chen G.C.,Li L.,Wu D.M.,Wang Q.B.,Biomaterials,2014,35(1),393-400.
  • 4Zhang Y.,Hong G.S.,Zhang Y.J.,Chen G.C.,Li F.,Dai H.J.,Wang Q.B.,ACS Nano,2012,6(5),3695-3702.
  • 5Zhang Y.,Zhang Y.J.,Hong G.S.,He W.,Zhou K.,Yang K.,Li F.,Chen G.C.,Liu Z.,Dai H.J.,Wang Q.B.,Biomaterials,2013,34(14),3639-3646.
  • 6Dong B.H.,Li C.Y.,Chen G.C.,Zhang Y.J.,Zhang Y.,Deng M.J.,Wang Q.B.,Chem.Mater.,2013,25(12),2503-2509.
  • 7Hong G.S.,Lee J.C.,Robinson J.T.,Raaz U.,Xie L.M.,Huang N.F.,Cooke J.P.,Dai H.J.,Nat.Med.,2012,18(12),1841-1846.
  • 8Robinson J.T.,Hong G.S.,Liang Y.Y.,Zhang B.,Yaghi O.K.,Dai H.J.,J.Am.Chem.Soc.,2012,134(25),10664-10669.
  • 9Smith A.M.,Mancini M.C.,Nie S.M.,Nature Nanotech.,2009,4(11),710-711.
  • 10Lim Y.T.,Kim S.,Nakayama A.,Stott N.E.,Bawendi M.G.,Frangioni J.V.,Mol.Imaging,2003,2(1),50-64.

共引文献2

同被引文献16

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部