期刊文献+

创建酿酒酵母细胞工厂发酵生产羽扇豆醇 被引量:9

Construction of cell factories for production of lupeol in Saccharomyces cerevisiae
原文传递
导出
摘要 羽扇豆醇、桦木酸等羽扇豆型三萜化合物具有抗HIV、抗肿瘤等多种生物学活性,其中羽扇豆醇为这类化合物的基本前体。为了实现羽扇豆烷型三萜的异源发酵法生产,研究首先运用高通量同源重组法在酿酒酵母中进行萜类甲羟戊酸(MVA)途径的一步法调控,以提高三萜通用前体鲨烯的供给;在进一步工作中,拟南芥来源的羽扇豆醇合成酶基因(At LUP)被整入三萜底盘菌株中实现羽扇豆醇酵母人工细胞工厂的创建。结果表明该实验能一次完成MVA途径的7个基因的整合,组装总长度达到20kb,同时多倍化MVA途径能显著提高鲨烯产量约500倍,达到354.00 mg·L^(-1);At LUP基因在染色体上整合后获得的工程菌NK2-LUP在摇瓶中发酵能生产8.23 mg·L^(-1)羽扇豆醇。该研究可为在酵母中实施大规模生物合成途径组装提供技术支持,同时为进一步获高产羽扇豆烷型三萜的人工酵母细胞提供了重要基础。 Lupane-type triterpenoids,such as betulinic acid,are derived from lupeol and have excellent properties in anti-HIV,anti-cancer activities and so on. For realizing heterogenous production of lupane-type triterpenoids,our research firstly integrated all the seven genes in the MVA pathway in Saccharomyces cerevisiae to increase the supply of squalene( triterpenoids universal precursor) in a single step using the DNA assembler method. Next,cell factories for production of lupeol was constructed by integrating Arabidopsis thaliana lupeol synthetic gene( At LUP) into chromosome of triterpenoid chassis strain. Results showed that the MVA pathway,about20 kb nucleotide length,could be assembled in one-pot process and the doubled MVA pathway could significantly improve squalene by500-fold,reaching 354. 00 mg·L^(-1). NK2-LUP was obtained by introducing At LUP gene on chromosome,and could produce 8. 23 mg·L^(-1)lupeol. This study supports the possibility of large-scale biosynthetic pathway assembly in S. cerevisiae and lays the foundation of obtaining cell factories for production of lupan-type triterpenoids at the same time.
出处 《中国中药杂志》 CAS CSCD 北大核心 2016年第6期1008-1015,共8页 China Journal of Chinese Materia Medica
基金 国家自然科学基金项目(81202864) 国家高技术研究发展计划(863)项目(2012AA02A704) 中国科学院青年创新促进会项目(2015138)
关键词 三萜 羽扇豆醇 合成生物学 酿酒酵母 triterpenoids lupeol synthetic biology Saccharomyces cerevisiae
  • 相关文献

参考文献21

  • 1姚庆生.天然药物化学[M].3版.北京:人民卫生出版社,2002:257-268.
  • 2Carelli M, Biazzi E, Panara F, et al. Medicago truncatula CYP716A12 is a muhifunctional oxidase involved in the biosyn- thesis of hemolytic saponins [ J]. Plant Cell ,2011,23(8 ) :3070.
  • 3Fukushima E O, Seki H, Ohyama K, et al. CYPTI6A subfamily members are multifunctional oxidases in triterpenoid biosynthesis [ J ]. Plant Cell Physio1,2011,52 ( 12 ) :2050.
  • 4Huang L L, LI J, Ye H C, et al. Molecular characterization of the pentaeyclic triterpenoid biosynthetic pathway in Catharanthu. roseus [ J ]. Planta,2012,236 ( 5 ) : 1571.
  • 5Pisha E, Chai H, Lee I S, et al. Discovery. of betulinic acid as a selective inhibitor of human-melanoma that functions by induction of apoptosis [ J ]. Nat Med, 1995,1 ( 10 ) : 1046.
  • 6Qian K D, Kuo R Y, Chen C H, et al. Anti-AIDS agents 81.design, synthesis, and structure-activity relationship study of bet- ulinic acid and moronic acid derivatives as potent HIV maturation inhibitors [ J]. J Membr Bio1,2010,53 ( 8 ) :3133.
  • 7Zhao H, Holmes S, Bose H, et al. Preparing new betulinic acid derivatives for fighting HIV viruses [ C ]. Abstr Pap Am Chem S, 2011,242.
  • 8Urano E, Ablan S D, Mandt R, et al. Alkyl amine bevirimat de- rivatives are potent and broadly active HIV-1 maturation inhibitors [ J ]. Antimicrob Agents Chemother,2015,60 ( 1 ) : 190.
  • 9Gaudet D, Plchette A. Process for preparing natural product de- rivatives from plants in a single step [ P]. WO200026174-A, US6280778-A,WO200026174-A2, CA2250481-A1 CA2288361- A1, AU200010217-A, US6280778-B1, CA2288361 -C ,2001.
  • 10Paddon C J, Wesffall P J, Pitera D J, et al. High-level semi- synthetic production of the potent antimalarial artemisinin [ J ]. Nature,2013,496 (7446) :528.

同被引文献77

  • 1金万梅,潘青华,尹淑萍,董静,姜立杰,杨丽,陈青华,赵剑波.外源基因在转基因植物中的遗传稳定性及其转育研究进展[J].分子植物育种,2005,3(6):864-868. 被引量:26
  • 2程必强,马信祥,许勇,喻学俭,丁靖凯.橙花叔醇植物资源及利用的研究[J].林产化学与工业,1996,16(2):22-28. 被引量:13
  • 3尹淑琴,范艳,常泓.基因工程菌的高密度发酵研究[J].安徽农业科学,2007,35(11):3175-3176. 被引量:11
  • 4周伟,周珮.稀有人参皂苷compoundK研究进展[J].药学学报,2007,42(9):917-923. 被引量:19
  • 5徐国强.代谢工程改造酿酒酵母生产延胡索酸[D].无锡:江南大学,2012.
  • 6Dujon B. The yeast genome project: what did we learn [J]. Trends in Genetics, 1996, 12 (7) : 263 -270.
  • 7Reid RID, Benedetti P, Bjomsti MA. Yeast as a model or- ganism for studying the actions of DNA topoisomerase - targe- ted drugs [J]. BiochimieaetBiophysicaActa (BBA) - Gene Structure and Expression, 1998, 1400 (1) : 289 - 300.
  • 8Sychrova H. Yeast as a model organism to study transport and homeostasis of alkali metal cations [J]. Physiological research, 2004, 53 : S91 - 98.
  • 9Ostergaard S, Olsson L, Nielsen J. Metabolic engineering of Saccharomyces cerevisiae [J]. Microbiology and Molecu- lar Biology Reviews, 2000, 64 ( 1 ) : 34 - 50.
  • 10Bussunear CM, Shuster JA. Genetic stability for protein expression systems in yeast [ J]. DevBio Stand, 1994, 83 : 13 - 19.

引证文献9

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部