期刊文献+

双极膜电渗析处理精制浓海水制备酸碱 被引量:8

Preparation of Acid and Base by Refined Content Contentrated Seawater with Bipolar Membrane Electrodialysis Process
下载PDF
导出
摘要 采用自行研制的三隔室型双极膜电渗析(BMED)膜堆,以模拟精制浓海水为原料制备酸碱,考察了操作条件对膜堆性能的影响和运行过程中酸碱室的盐组分泄漏问题。结果表明,在电流密度为30 m A/cm^2,精制浓海水盐的质量浓度为147 g/L,碱(酸)与盐初始溶液体积比为1:1的条件下,实验范围内产品碱的收率可达56.4%;膜堆产率和碱收率随电流密度的提高而提高,但电流效率随之下降;较大的碱(酸)与盐初始溶液体积比有利于盐离子的迁移,电流效率相应上升,过程能耗减小;膜堆电阻随浓海水盐含量的升高而减小,过程能耗降低,但产品碱的收率有所下降。实验过程在酸室中检测到有Na^+、K^+,而碱室中检测到Cl^-,表明所用双极膜和阴阳离子交换膜存在一定程度的离子泄漏,且随过程运行逐步加剧。 Using self-designed t hree-compartment bipolar membrane ele ctrodialysis(BMED) stack, acid and base is prepared by refined content contentrated seawater. The effect of operation conditions on performance of membrane module and the salt leakage between acid-base compartment was studied. The results show that: when the current density is 30 m A/cm2, the mass content contentration of salt is 147 g/L and the initial volume ratio of base(acid) and salt is 1:1,the base recovery can reach 56.4%; when current density increases, the yields and recovery of base will be increased,but the current efficiency will decrease; the larger volume ratio, which is in favor of the ions migration, will be accompanied by a corresponding increase in current efficiency, and t he energy consumption will reduce; the higher content of salt which leads to a smaller stack res istance can reduce energy consumption, but the base recovery declines. During the experiment, Na+ and K+ were detected in the acid compartment, and Cl- was detected in the base compartment, which verified the non-ideal permselectivity of bipolar membrane and ion exchange membrane. And this salt leakage gradually increased over time.
出处 《水处理技术》 CAS CSCD 北大核心 2016年第5期17-22,共6页 Technology of Water Treatment
基金 国家海洋公益性行业科研专项经费项目(201405008-6) 天津市科技特派员项目(14JCTPJC00481) 天津市863计划成果转化项目(14RCHZSF00146)
关键词 双极膜 电渗析 精制浓海水 酸碱 bipolar membrane electrodialysis refined concentrated seawater acid
  • 相关文献

参考文献15

  • 1徐铜文,汪志武,刘宁.双极膜的理论及应用展望[J].水处理技术,1998,24(1):20-25. 被引量:29
  • 2徐铜文,傅荣强译.双极膜技术手册[M].北京:化学工业出版社,2004.
  • 3Ghyselbrecht K, Silva A, Van d B B, et al. Desalination feasibility study of an industrial NaC1 stream by bipolar membrane electro- dialysis[J].Journal of Environmental Management,2014,140:69-75.
  • 4Liu G, Luo H, Wang H, et al. Malic acid production using a biological electrodialysis with bipolar membrane [J].Journal of Membrane Science,2014,471 (6): 179-184.
  • 5Fu L, Gao X, Yang Y, et al. Preparation of succim'c acid using bipolar membrane electrodialysis[J].Separation & Purification Technology, 2014,127(1):212-218.
  • 6Song S, Tao Y, Shen H, et al. Use of bipolar membrane dectrodialysis (BME) in purification of L-ascorbyl-2-monophosphate[J].Sepamtion & Purification Technology,2012,98(39): 158-164.
  • 7Lameloise M L, Lewandowski R. Recovering L-malic acid from a beverage industry waste water: Experimental study of the conversion stage using bipolar membrane electrodialysis[J].Joumal of Membrane Science,2012,403/404(3): 196-202.
  • 8Tran A T K, Mondal P, Lin J Y, et al. Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor[J].Journal o f Membrane Science,2015, 473:118-127.
  • 9Prochaska K, Woniak-Budych M J. Recovery of fumaric acid from fermentation broth using bipolar electrodialysJs[J].Joumal of Membrane Science,2014,469( 11):428-435.
  • 10Lopez A M, Hestekin J A. Separation of organic acids from water using ionic liquid assisted electrodialysis[J].Separation & Purification Technology,2013,116(37): 162-169.

二级参考文献83

共引文献74

同被引文献56

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部