期刊文献+

基于互补子词单元词图融合的集外词识别

Out-of-Vocabulary Word Recognition Based on Lattice Combination of Complement Sub-lexical Units
下载PDF
导出
摘要 混合模型在进行集外词识别时,采用不同类型的子词单元通常具有性能上的互补性.基于此种情况,文中提出互补子词单元词图融合的集外词识别方法.首先分别采用音节和字母音素对搭建2套具有性能差异性的混合模型系统.然后获得这2套系统的识别词图,并合并处理词图中的子词单元.最后分别采用基于词图并集和基于词图交集的融合策略融合处理后的词图,得到更好的集外词识别结果.实验表明文中方法性能优于单系统及ROVER方法. Different sub-lexical units used in hybrid model often provide complementary information for each other during out-of-vocabulary (OOV) words recognition. In this paper, a lattice combination method of complement sub-lexical units for out-of-vocabulary words recognition is proposed. Firstly, two hybrid model systems with performance difference are built respectively by using syllables and graphones. Next, the recognition lattices are obtained from the built systems and the sub-lexical units are preprocessed for the purpose of combination. Finally, the combination strategies based on lattices union and lattices intersection are respectively explored to combine the lattices to acquire the better result of OOV Words recognition . The experimental results show the proposed method is superior to individual system and the recognizer output voting error reduction (ROVER) system in OOV words recognition.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第4期350-358,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61403415 61302107 61175017)资助~~
关键词 集外词检测 集外词恢复 混合模型 词图融合 Out-of-Vocabulary Detection, Out-of-Vocabulary Recovery, Hybrid Model, LatticeCombination
  • 相关文献

参考文献19

  • 1LEE H Y, CHOU P W, LEE L S. Improved Open-Vocabulary Spo- ken Content Retrieval with Word and Subword Lattices Using Aeous- tie Feature Similarity. Computer Speech and Language, 2014, 28(5) : 1045-1065.
  • 2HE Y Z, HUTCHINSON B, BAUMANN P, et al. Subword-Based Mode-ling for Handling OOV Words in Keyword Spotting//Proc of the IEEE International Conference on Acoustics, Speech and Signal Processing. Singapore, Singapore, 2014: 7864-7868.
  • 3RASTROW A, SETHY A, RAMABHADRAN B. A New Method for OOV Deteetion Using Hybrid Word/Fragment System//Proe of the IEEE International Conference on Acoustics, Speech and Signal Proee-ssing. Taibei, China, 2009 : 3953-3956.
  • 4ALI M, SHAIK B. Hybrid Language Models Using Mixed Types of Sub-Lexieal Units for Open Vocabulary German LVCSR// Proc of the 12th Annual Conference of the International Speech Communica- tion Association. Florence, Italy, 2011 : 1441-1444.
  • 5SHAIK M A B, RYBACH D, HAHN S, et al. Hierarchical Hybrid Language Models for Open Vocabulary Continuous Speeeh Recogni- tion Using WFST//Proc of the Workshop on Statistical and Percep- tual Audition. Portland, USA, 2012: 46-51.
  • 6RIVEIL B, DEMUYNCK K, MARTENS J P. An Improved Two- Stage Mixed Language Model Approach for Handling Out-of-Vocabu- lary Words in Large Vocabulary Continuous Speech Recognition. Computer Speech and Language, 2014, 28( 1 ) : 141-162.
  • 7QIN L, SUN M, RUDNICKY A I. OOV Detection and Recovery Using Hybrid Models with Different Fragments// Proc of the 12th Annual Conference of the International Speech Communication Asso- ciation. Florence, Italy, 2011: 1913-1916.
  • 8VALENTE F. Multi-stream Speech Recognition Based on Dempster- Shafer Combination Rule. Speech Communication, 2010, 52 ( 3 ) : 213-222.
  • 9MAMOU J, CUI J, CUI X D, et al. System Combination and Score Normalization for Spoken Term Detection//Proc of the IEEE Inter- national Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, 2013: 8272-8276.
  • 10QIN L, SUN M, RUDNICKY A I. System Combination for Out-of- Vocabulary Word Detection//Proc of the IEEE International Con- ference on Acoustics, Speech and Signal Processing. Kyoto, Ja- pan, 2012 : 4817-4820.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部