期刊文献+

锆掺杂以提升LiNi0.5Co0.2Mn0.3O2正极材料的高温电化学性能 被引量:10

Enhanced Electrochemical Performance of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2 Cathode Materials at Elevated Temperature by Zr Doping
下载PDF
导出
摘要 为解决LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1%(x)时,可以降低LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25°C、3.0-4.3 V下,Li(Ni_(0.5)Co_(0.2_Mn_(0.3)_(0.99)Zr_(0.01)O_2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55°C下,Li(Ni_(0.5)Co_(0.2)Mn_(0.3)_(0.99)Zr_(0.01)O_2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的高温循环性能有积极作用。 In order to ameliorate the severe capacity fading of LiNi0.5Co0.2Mn0.3O 2 cathode materials at elevated temperatures, a Zr-doping strategy was performed via a solid-state method, and the influence of the doping content on the structural and electrochemical properties of LiNi0.5Co0.2Mn0.3O2 was studied. The results indicate that the Li^+/Ni^2+ cation mixing can be reduced and the electrochemical performance, especially the hightemperature cycling performance, can be improved when the doping content of zirconium is 0.01. After 95 cycles,the capacity retention of Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 is 92.13% at 1C between 3.0 and 4.3 V, which is higher than that of the LiNi0.5Co0.2Mn0.3O2(87.61%). When cycling at 55 ℃, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2 exhibits a capacity retention of 82.96% after 115 cycles at 1C, while that of the bare sample remains at only 67.63%. Therefore,a small amount of zirconium doping is notably beneficial to the electrochemical performance of LiNi0.5Co0.2Mn0.3O2 at elevated temperatures.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2016年第5期1056-1061,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21506133) 四川省科技支撑计划(2014GZ0077)资助项目
关键词 锂离子电池 正极材料 LI Ni0.5Co0.2Mn0.3O2 锆掺杂 高温循环性能 Lithium-ion battery Cathode material LiNi05 Co02 Mn03O2 Zr-doping High-temperature cycle performance
  • 相关文献

参考文献2

二级参考文献41

  • 1钟辉,许惠.层状Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2正极材料的合成与电化学性能研究[J].化学学报,2007,65(2):147-151. 被引量:14
  • 2Ohzttku, T.; Makimura, Y. Chem. Lett. 2001, 7, 642.
  • 3Hwang, B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G. Chem. Mater 2003, 15, 3676. doi: 10.1021/cm030299v.
  • 4Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2002, 48, 145. doi: 10.1016/S0013-4686(02)00593-5.
  • 5吴峰,王萌,苏岳峰,陈实.物理化学学报,2009,25,629.doi:10.3866/PKU.WHXB2009041l.
  • 6Tu, J. P.; Wu, H. M.; Chen, X. T.; Yuan, Y. F.; Li, Y.; Zhao, X. B.; Cao, G. S. J. Power Sources 2006, 159, 291. doi: 10.1016/j. jpowsour.2006.04.032.
  • 7Chen, J.; Wang, S.; Whittingham, M. S. J2 Power Sources 2007, 174, 442. doi: 10.1016/j.jpowsour.2007.06.189.
  • 8Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. J. Power Sources 2006, 159, 263. doi: 10.1016/j.jpowsour.2006.04.134.
  • 9Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. J. Power Sources 2003, 119, 644. doi: 10.1016/S0378-7753(03) 00194-0.
  • 10Yoon, W. S.; Grey, C. E; Balasubramanian, M.; Yang, X. Q.; Fischer, D. A.; McBreen, J. Electrochem. Solid State Lett. 2004, 7, A53.

共引文献7

同被引文献36

引证文献10

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部