期刊文献+

多视图合作的网络流量时序数据可视分析 被引量:29

Collaborative Visual Analytics for Network Traffic Time-Series Data with Multiple Views
下载PDF
导出
摘要 网络安全可视化作为一个交叉应用研究领域,为传统网络安全数据分析方法注入了新的活力.但已有研究过于注重网络安全数据的可视表达,而忽视了对分析流程的支持.抽象了网络安全分析人员用网络流量时序数据检测网络异常的过程,提出了一个自顶向下的网络流量时序分析流程模型.以该模型为指导,设计并实现了一个多视图合作的网络流量时序数据可视分析原型系统.在分析端口扫描和DDo S攻击等常见网络异常的案例中,该系统中的4个协同交互、简单易用的可视视图,可以较好地支撑分析人员由整体到个体、由点到面以及由历史到未来的网络流量时序数据分析过程. Cyber security visualization is a multi-discipline research field. Visualization techniques have injected new vitality into traditional analysis methods for cyber security. However, most existing studies focus on the visual expression and overlook the visual support for the data analysis process. This paper presents a top-down model for anomaly detection on network traffic time-series data drawing from the experience of cyber security analysts. A prototype system is designed based on this model, and it includes four collaborative views with direct and rich interactions. A number of experiments, including port scanning and DDo S attacking, are carried out to demonstrate that this system can support network traffic time-series analysis on overview to detail, point to area and past to future process flows.
出处 《软件学报》 EI CSCD 北大核心 2016年第5期1188-1198,共11页 Journal of Software
基金 国家自然科学基金(61103108 61402540) 湖南省科技支撑计划(2014GK3049)~~
关键词 网络安全可视化 可视分析 网络流量 时序数据 异常检测 cyber security visualization visual analytics network traffic time series data anomaly detection
  • 相关文献

参考文献2

二级参考文献81

  • 1McCORMICK B H, DEFANTI T A, BROWN M D. Visualization in scientific computing[J]. Computer Graphics, 1987, 21 (6) : 153-156.
  • 2CARD S K, MACKINLAY J D, SHNIDERMAN B. Readings in information visualization: using vision to think[M]. San Fransisco: Morgan Kaufmann Publishers, 1999
  • 3BECKER R A, EICK S G, WILKS A R. Visualizing network data [J]. IEEE Transactions on Visualization and Computer Graphics, 1995, 1(1):16-28
  • 4FORTIER S C, SHOMBERT L A. Network profiling and data visualization[ C]// Proceedings of the 2000 IEEE Workshop on Information Assurance and Security. West Point, NY: IEEE, 2000:166 - 169.
  • 5GIRARDIN L , BRODBECK D . A visual approach for monitoring logs[ EB/OL]. [ 2008 - 07 - 23 ]. http://www. ubilab, org/publications/print versions/pdf/gir98, pdf.
  • 6ERBACHER R F, FRINCKE D. Visualization in detection of intrusions and misuse in large-scale networks[ C]// Information Visualization 2000. Washington DC: IEEE CS Press, 2000:294 -299.
  • 7ERBACHER R F. Visual behaviour characterization for intrusion detection in large scale systems[ EB/OL]. [ 2007 - 08 - 23]. http:// www. cs. albany, edu/-erbacher/publications/SecurityVisPaper2 - VIIP01 color, pdf.
  • 8刘戡.多维数据可视化研究[D].武汉:武汉大学,2002.
  • 9KASEMSRI R R. A survey, taxonomy, and analysis of network security visualization techniques[ D]. USA: Georgia State University, 2005.
  • 10CONTI G, ABDULLAH K. Passive visual fingerprinting of network attack tools[ EB/OL]. [ 2007 - 08 - 23]. http://www. rumint. org/gregeonti/publications/20040617_VizSec_Fingerprinting. pdf.

共引文献80

同被引文献219

引证文献29

二级引证文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部