期刊文献+

基于栈式自动编码的图像哈希算法 被引量:7

Image Hashing algorithm based on stacked autoencoder
下载PDF
导出
摘要 随着网络图像的快速发展,在大型图像检索系统中哈希算法成为近似最近邻查询算法的研究重点。本文提出一种基于深度模型的哈希算法—深度哈希。通过深度卷积神经网络提取的图像高维全局特征,用栈式自动编码器对特征进行无监督学习得到二进制哈希编码,利用图像标签语义相似性对栈式自动编码器的参数进行微调,最后用汉明距离来计算图像的相似性。本文提出的深度哈希在图像检索中取得了较好的结果。 With the rapid development of network in the large image,image hashing algorithm has attracted interests as an approach of approximate nearest neighbor algorithm in the image retrieval system.In this paper,we proposed the deep hash which based on deep learning models.The high dimensional global are extracted by deep convolutional neural network,then using stack autoencoder to get the parameters of the models by unsupervised learning to get the binary hash code.Finally using the hamming distance to compute the similarity of the images.The deephash proves the better results in image retrieval.
出处 《电子测量技术》 2016年第3期46-49,69,共5页 Electronic Measurement Technology
关键词 深度学习 哈希算法 栈式自动编码 deep learning hashing stacked autoencoder
  • 相关文献

参考文献13

  • 1XIA R, PPA Y, LAI H, et al. Supervised hashing for image retrieval via image representation learning [C]//AAAI. 2014(1): 2156-2162.
  • 2KULIS B, DARRELL T. Learning to hash with binary reconstructive embeddings [C]//Advanees in neural information processing systems. 2009: 1042-1050.
  • 3GONG Y, LAZEBNIK S. Iterative quantization: A procrustean approach to learning binary codes[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011: 817-824.
  • 4WEISS Y, TORRALBA A, FERGUS R. Spectral hashing [C]//Advances in neural information processing systems, 2009 : 1753-1760.
  • 5LIU W, WANG J, JI R, et al. Supervised hashing with kernels [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012: 2074-2081.
  • 6孙锐,高隽.组合NMF和PCA的图像哈希方法[J].电子测量与仪器学报,2009,23(5):52-57. 被引量:19
  • 7徐华珺,韩立新.图像检索系统关键技术的研究与应用[J].电子测量技术,2014,37(5):33-37. 被引量:9
  • 8ZhAO F, HUANG Y Z, WANG L, et al. Deep semantic ranking based bashing for multi-label image retrieval [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern RecognitiorL 2015: 1556-1564.
  • 9刘佳,傅卫平,王雯,李娜.基于改进SIFT算法的图像匹配[J].仪器仪表学报,2013,34(5):1107-1112. 被引量:97
  • 10周美丽,白宗文.基于形状特征的图像检索系统的设计[J].国外电子测量技术,2015,34(6):82-84. 被引量:12

二级参考文献50

  • 1周毓萍.企业技术创新能力的神经网络检验分析[J].科技进步与对策,2000,17(6):62-63. 被引量:21
  • 2查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 3楼顺天 施阳.基于MATLAB的系统分析与设计-神经网络[M].西安电子科技大学出版社,1999..
  • 4楼顺天 施阳.基于MATLAB的系统分析与设计--神经网络[M].西安:西安电子科技大学出版社,1999..
  • 5王朔中,张新鹏.Recent development of perceptual image hashing[J].Journal of Shanghai University(English Edition),2007,11(4):323-331. 被引量:7
  • 6MORAVEC H P. Rover visual obstacle avoidance [ C ]. The seventh International Joint Conference on Artificial Intelligence, Vancouver, British Columbia, 1981 : 785 -790.
  • 7HARRIS C, STEPHENS M. A combined corner and edge detector[ C]. The 4th Alvey Vision Conference, Manches- ter, UK, 1988 : 147-151.
  • 8LOWE D G. Distinctive image features from scale invari- ant key points [ J ]. International Journal of Computer Vi- sion,2004,60 (2) :91-110.
  • 9YAN K, SUKTHANKAR R. PCA-SIb~F:A more distinctive representation for local image descriptors[ C ]. IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition, Washington, USA, 2004 (2): 11/506- I1/513.
  • 10ABDEL-HAKIM A E, FARAG A A. CSIFT: A sift de- scriptor with color invariant characteristics [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, USA ,2006 : 1978-1983.

共引文献145

同被引文献39

引证文献7

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部