期刊文献+

封闭单壁碳纳米锥吸附氢性能的模拟计算研究

Simulations of hydrogen storage in closed single-wall carbon nano-cones
原文传递
导出
摘要 为了研究封闭单壁碳纳米锥(SWCNC)吸附氢性能,采用雷纳德-琼斯势(L-J)12:6势能模型和巨正则蒙特卡罗方法(GCMC),模拟了5种锥度封闭SWCNC的吸氢过程.在室温高压情况下,顶角分别为112.9°、83.6°、60.0°、38.9°、19.2°,对应高度为0.48、0.65、0.62、0.96、1.28 nm的封闭SWCNC,内部与氢的结合能对应分别为0.187、0.165、0.166、0.148、0.103 e V时,得到最大氢吸附量质量分数分别为5.62%、6.47%、7.56%、6.87%、6.65%.结果表明封闭SWCNC的氢吸附量与结构有较大关系,优于在同等条件下的碳纳米管、富勒烯,在吸附存储方面有一定应用价值. For studying the adsorption of hydrogen in closed single-wall carbon nano-cone( SWCNC),This paper uses the 6-12 Lennard-Jones potential and the grand canonical Monte Carlo( GCMC) methods to systematically simulate the hydrogen absorption process in closed SWCNC of five vertex angles.Under the circumstances of high-pressure in room temperature,the SWCNC with apex angle respectively appears 112. 9°,83. 6°,60. 0°,38.9°,19.2° and its length is 0.48,0.65,0.62,0.96,1.28 nm accordingly.When the inside of the SWCNC and hydrogen binding energy is 0.187,0.165,0.166,0.148,0.103 e V,its gravimetric capacity is 5.62%,6.47%,7.56%,6.87%,6.65% with its maximum.According to the calculated results,there is a close relationship between hydrogen adsorption capacity and structure of SWCNC.The adsorption performance of SWCNC is better than that of carbon nanotubes and fullerene under the same conditions. And it has a certain application value in the adsorption and storage.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第3期412-417,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 云南省教育厅科学研究基金(2013Y057)
关键词 封闭单壁碳纳米锥 氢吸附 雷纳德-琼斯势 巨正则蒙特卡罗 closed single-wall carbon nano-cone hydrogen adsorption Lennard-Jones potential grand canonical Monte Carlo method
  • 相关文献

参考文献4

二级参考文献56

  • 1郭连权,马常祥,王帅,李辛.单壁碳纳米管储氢行为的模拟计算研究[J].人工晶体学报,2004,33(3):371-375. 被引量:4
  • 2吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,68(2):111-116. 被引量:16
  • 3DILLON A C, JONES K M, BEKKEDAHL T A, et al. Storage of hydrogen in single - walled carbon nanotbue [ J ]. Nature, 1997,386 : 377-379.
  • 4GEIM A K, NOVOSELOV K S. The Rise of Grapheme [ J]. Nature Materials ,2007,6 : 183-191.
  • 5NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [ J ]. Science, 2004,306 : 666 -669.
  • 6YASUNORI K, SEIICHI T, MOMOJI K, et al. Fluid phase equilibria[ M ]. Elsevier Science ,2002.
  • 7RAPPE A K, CASEWIT C J, COLWELL K S, et al. UFF a full periodic table force field for molecular mechanics and molecular dynamics simulations[J].J Am Chem Soe, 1992,114 : 10 024-10 035.
  • 8SHAW H R,WONES D R. Fugacity coefficients for hydrogen gas between 0 and 1000℃,for pressures to 3 000 atm [J]. Am J Sci, 1964,262 : 918-929.
  • 9ANNEMIEKE W C van den Berg, STEFAN T Bromley, JACEK C Wojdel, et al. Adsorption isotherms of H2 in microporous materials with the SOD structure:A grand canonical monte carlo study[ J]. Microporous and Mesoporous Materials ,2006,87:235-242.
  • 10DEMING W E, SHUPE L E. Some physical properties of compressed gases, III. hydrogen [ J ]. Phys Re'v, 1932,40 : 848-859.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部