期刊文献+

KH550-GO复合栅介质低压氧化物薄膜晶体管

Low-voltage oxide thin film transistor made of KH550-GO composite dielectrics
下载PDF
导出
摘要 采用旋涂法制备硅烷偶联剂-氧化石墨烯(KH550-GO)新型复合栅介质薄膜,由于栅介质层和沟道层界面处明显的双电层效应,单位面积电容高达2.18×10^(–6)F/cm^2。通过自组装法,借助磁控溅射仪,仅需一次掩膜,即可同时生成晶体管的沟道与源漏电极。利用半导体参数分析仪在室温黑暗的条件下测量该晶体管的电学特性,结果表明,KH550-GO栅介质氧化物薄膜晶体管具有优良的电学性能,其工作电压仅为2 V、饱和电流为580μA、亚阈值摆幅108 m V/dec、开关比4×10~7、场效应迁移率16.7 cm^2·V^(-1)·s^(-1)。 Spin coated-processed silane coupling agents(KH550-GO) composite proton conductor film shows a large specific gate capacitance of 2.18×10–6 F/cm2 due to the interfacial electric-double-layer effect. Low-voltage oxide(IZO) TFTs gated by a KH550-GO composite proton conductor film were self-assembled by only one shadow-mask. Electrical characteristics of the devices were measured by a Keithley 4200 SCS semiconductor parameter analyzer at room temperature under the condition of darkness. The results show that KH550-GO oxide thin film transistors possess good electrical properties, the operating voltage is only 2 V, the saturation current, the subthreshold gate voltage swing, the current on/off ratio, and the field-effect mobility are estimated to be 580 μA, 108 m V/dec, 4×107, and 16.7 cm2·V-1·s-1, respectively.
出处 《电子元件与材料》 CAS CSCD 2016年第5期44-47,共4页 Electronic Components And Materials
基金 江苏大学高级人才科研启动基金(No.14JDG049)
关键词 有源层 非晶铟锌氧化物 双电层效应 KH550-GO复合栅介质 薄膜晶体管 场效应迁移率 active layer amorphous indium zinc oxide electric double layer effects KH550-GO composite dielectrics oxide thin film transistor field-effect mobility
  • 相关文献

参考文献2

二级参考文献19

  • 1Draghici M, Diaconescu D, Melnikov A, Wieck A D 2010 Phys. Status Solidi A 207 229.
  • 2Chung T H, Chen S H, Liao W H, Lin S Y 2010 IEEE Electron Device Lett. 31 1227.
  • 3Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake.
  • 4Zhao K S, Xuan R J, Han X, Zhang G M 2012 Acta Phys. Sin. 61 197201 (in Chinese).
  • 5Jiang J, Sun J, Dou W, Zhou B, Wan Q 2011 Appl. Phys. Lett. 98 113507.
  • 6Raval H N, Tiwari S P, Navan R R, Mhaisalkar, Rao V R 2009 IEEE Electron Device Lett. 30 48.
  • 7Kim J B, Fuentes H C, Kippelen B 2008 Appl. Phys. Lett. 93 242111.
  • 8Wang G M, Moses D, Heeger A J 2004 J. Appl. Phys. 95 316.
  • 9Larsson O, Said E, Berggren M, Crispin X 2009 Adv. Funct. Mater. 19 3334.
  • 10Cho J H, Lee J, He Y, Kim B, Lodge P T, Frisbie C D 2008 Adv. Mater. 20 686.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部