期刊文献+

基于发射波束域-三迭代的机载MIMO雷达STAP方法 被引量:1

Airborne MIMO Radar STAP Method Based on Transmit Beamspace-tri-iterative Algorithm
下载PDF
导出
摘要 针对传统机载多输入多输出(MIMO)雷达空时自适应处理(STAP)中由于发射功率分散而造成的输出信杂噪比(SCNR)下降的问题,该文提出一种基于发射波束域-三迭代的机载MIMO雷达STAP方法。首先建立了发射波束域MIMO雷达STAP的信号模型,并且给出了发射波束加权矩阵的优化设计准则,能够使发射功率聚集于感兴趣的目标空域。然后对发射波束域MIMO雷达的杂噪比(CNR)进行分析,表明其与发射总功率的关系,理论推导显示:相比于全向等功率发射的传统MIMO雷达CNR,发射波束域MIMO雷达CNR减小。同时,为进一步降低发射波束域MIMO-STAP的训练样本数需求与运算复杂度,采用三迭代算法进行权值降维求解。理论分析与仿真实验结果表明:通过相应的三迭代降维处理,发射波束域MIMO-STAP与传统全向等功率发射MIMO-STAP相比能够获取更加优越的输出SCNR性能,且运算量进一步降低。因此,本文提出的发射波束域-三迭代方法具有重要的工程应用价值。 The output Signal-to-Clutter-plus-Noise Ratio(SCNR) of traditional airborne MIMO radar STAP decreases because of the transmit power dispersion. To solve this problem, a MIMO-STAP method based on Transmit Beamspace(TB)-TRi-Iterative Algorithm(TRIA) is proposed. Firstly, the signal model of the TB-based MIMO radar STAP is established, and the optimizing criterion for designing the TB weight matrix is proposed to focus all transmit power within the desired spatial sector. Then, the Clutter-to-Noise Ratio(CNR) of the TB-based MIMO radar is analyzed to show its relationship with the total transmit power. The theoretical derivation is further provided to illustrate that the CNR of the TB-based MIMO radar is reduced compared with that of the traditional MIMO radar with uniform omni-directional transmission. Furthermore, in order to decrease the training sample requirement and the computational complexity of the TB-based MIMO-STAP, the TRIA is utilized to resolve the reduced-dimension weight vectors. The theoretical analysis and simulation results show that, through the corresponding tri-iterative reduced-dimension processing, the TB-based MIMO-STAP can achieve the improvement of the output SCNR, compared to the traditional MIMO-STAP with uniform omni-directional transmission. Moreover, the computational burden is further decreased. Therefore, the proposed TB-TRIA method has great value for engineering application.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1034-1040,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(41301481)~~
关键词 机载MIMO雷达 发射波束域 空时自适应处理 杂噪比分析 三迭代算法 Airborne MIMO radar Transmit Beamspace(TB) Space-Time Adaptive Processing(STAP) Clutter-to-Noise Ratio(CNR) analysis TRi-Iterative Algorithm(TRIA)
  • 相关文献

参考文献17

  • 1HAIMOVICH A M, BLUM R S, LENARD J, et al. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129. doi: 10.1109/ MSP.2008.4408448.
  • 2LI J and STOICA P. MIMO radar with collocated antennas [J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114. doi: 10.1109/MSP.2007.904812.
  • 3施君南,纠博,刘宏伟,王旭.一种基于先验信息的机载MIMO雷达发射方向图设计方法[J].电子与信息学报,2015,37(5):1038-1043. 被引量:9
  • 4王珽,赵拥军,胡涛.机载MIMO雷达空时自适应处理技术研究进展[J].雷达学报(中英文),2015,4(2):136-148. 被引量:10
  • 5GUERCI J R. Space Time Adaptive Processing for Radar[M]. Norwood, MA: Artech House, Inc., 2003: 3-55.
  • 6KLEMM R. Principles of Space-Time Adaptive Processing [M]. London: The Institution of Electrical Engineers, 2002: 5-45.
  • 7XIANG C, FENG D Z, and Lü H. Three-dimensional reduced-dimension transformation for MIMO radar space- time adaptive processing[J]. Signal Processing, 2011, 91(8): 2121-2126. doi: 10.1016/j.sigpro.2011.01.017.
  • 8HE J, FENG D Z, and MA L. Reduced-dimension clutter suppression method for airborne multiple-input multiple- output radar based on three iterations[J]. IET Radar, Sonar & Navigation, 2015, 9(3): 249-254. doi: 10.1049/iet-rsn. 2014.0149.
  • 9吕晖,冯大政,和洁,向聪.机载MIMO雷达两级降维杂波抑制方法[J].电子与信息学报,2011,33(4):805-809. 被引量:16
  • 10冯为可,张永顺,赵杰.机载MIMO雷达修正GMB降维方法[J].空军工程大学学报(自然科学版),2015,16(1):28-31. 被引量:2

二级参考文献188

  • 1Brennan L E and Reed I S. Theory of adaptive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, 9(2): 237-252.
  • 2Bliss D W and Forsythe K W. Multiple-input multipleoutput (MIMO) radar and imaging: degrees of freedom and resolution[C]. Proceedings of the 37th IEEE Asilomar Conference on Signals, Systems, Computers, Monterey, USA, 2003: 54-59.
  • 3Chen C Y and Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transactions on Signal Processing, 2008, 56(2): 623-635.
  • 4Mecca V F, Ramakrishnan D, and Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. Proceedings of the 4th IEEE Workshop on Sensor Array and Multichannel Signal Processing, Waltham, USA, 2006: 249-253.
  • 5Wang G H and Lu Y L. Clutter rank of MIMO radar with a special class of waveforms[C]. Proceedings of the International Waveform Diversity & Design Conference, Kissimmee, USA, 2009: 108-112.
  • 6Marcos S. Range recursive space time adaptive processing (STAP) for MIMO airborne radar[C]. Proceedings of the 17th European Signal Processing Conference, Glasgow, Scotland, 2009: 592-596.
  • 7Btm Zheng, Wu Shun-jun, and Liao Gui-sheng, et al.. Review of reduced rank space-time adaptive processing for airborne radars[C]. Proceedings of the International Conference on Radar, Beijing, China, 1996: 766-769.
  • 8Dippetro R C. Extended factored space-time processing for airborne radar system[C]. Proceedings of the 26th IEEE Asilomar Conference on Signals Systems and Computers, Monterey, USA, 1992: 425-430.
  • 9Reed I S, Mallett J D, and Brennan L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, 10(6): 853-863.
  • 10Stoica P and Selen Y. Cyclic minimizers, majorization techniques, and expectation-maximization algorithm: a refresher[J]. IEEE Signal Processing Magazine, 2004, 21(1): 112-114.

共引文献40

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部