期刊文献+

基于低秩结构提取的高光谱图像压缩表示 被引量:3

Low-rank Structure Based Hyperspectral Compression Representation
下载PDF
导出
摘要 为实现高效、精准的高光谱图像分类,该文利用低秩矩阵恢复从原始数据中提取低维特征,实现高光谱图像的压缩表示。针对高光谱应用的特殊性,该文算法基于结构相似性度量(Structural Similarity Index Measurement,SSIM)对矩阵恢复过程提出了信噪分离约束,有助于选择更优的模型参数,增强表示的准确性。实验证明,相比现有相关方法,该文算法能够有效去除高光谱图像中的噪声,表示结果更为鲁棒;在仅使用低维特征时,仍能达到较高的分类精度。 A method which makes use of structure information abstracted from hyperspectral data via low-rank matrix recovery for hyperspectral image classification is proposed in this paper. The principle of maximizing structure information based on Structural Similarity Index Measurement(SSIM) is proposed to restrain the process of matrix recovery as well, which facilitates the separation of the signal and the noise. The experiments show that the proposed algorithm can effectively eliminate the non-linear noise in hyperspectral image and abstract the low-rank characteristics of hyperspectral image, which achieves better performance in classification.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1085-1091,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61132007 61202332 61503405) 国家自然科学青年基金(61403397) 中国博士后科学基金(2012M521905) 陕西省自然科学基础研究计划项目(2015JM6313)~~
关键词 高光谱图像分类 压缩表示 低秩矩阵恢复 Hyperspectral image classification Compression representation Low-rank matrix recovery
  • 相关文献

参考文献18

  • 1吴倩,张荣,徐大卫.基于稀疏表示的高光谱数据压缩算法[J].电子与信息学报,2015,37(1):78-84. 被引量:11
  • 2CAMPS-VALLS G, TUIA D, BRUZZONE L, et al. Advances in hyperspectral image classification[J]. IEEE Signal Processing Magazine, 2014, 21(4): 45-54. doi: 10.1109/MSP. 2013.2279179.
  • 3贾应彪,冯燕,王忠良,魏江.基于谱间结构相似先验的高光谱压缩感知重构[J].电子与信息学报,2014,36(6):1406-1412. 被引量:10
  • 4BIOUCAS-DIAS J, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Remote Sensing Magazine, 2013, 1(2): 6-36. doi: 10.1109/MGRS.2013.2244672.
  • 5粘永健,辛勤,汤毅,万建伟.基于多波段预测的高光谱图像分布式无损压缩[J].光学精密工程,2012,20(4):906-912. 被引量:39
  • 6唐中奇,付光远,陈进,张利.基于多尺度分割的高光谱图像稀疏表示与分类[J].光学精密工程,2015,23(9):2708-2714. 被引量:19
  • 7ZHOU Yicong, PENG Jiangtao, and CHEN C L P. Dimension reduction using spatial and spectral regularized local discriminant embedding for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 1082-1095. doi: 10.1109/TGRS. 2014.2333539.
  • 8LIAO W, PIZURICA A, SCHEUNDERS P, et al. Semi- supervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 184-198. doi: 10.1109/ TGRS.2012.2200106.
  • 9CARIOU C, CHEHDI K, and MOAN S L. An unsupervised band reduction method for hyperspectral remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 565-569. doi: 10.1109/LGRS.2010.2091673.
  • 10XUE Zhaohui, LI Jun, CHENG Liang, et al. Spectral-spatial classification of hyperspectral data via morphological component analysis-based image separation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 70-84. doi: 10.1109/TGRS.2014.2318332.

二级参考文献54

  • 1Donoho D. Compressed sensing [J]. IEEE Transactions onInformation Theory, 2006,52(4): 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertaintyprinciples: exact signal reconstruction from highly incompletefrequency information[J]. IEEE Transactions on InformationTheory, 2006,52(2): 489-509.
  • 3Takhar D, Laska J N, Wakin M B, et al. A new compressiveimaging camera architecture using optical-domaincompression [C]. Computational Imaging IV at SPIEElectronic Imaging, San Jose, California, 2006: 43-52.
  • 4Sun T and Kelly K F. Compressive sensing hyperspectralimager[C]. Computational Optical Sensing and Imaging(COSI) Conference, San Jose, CA, 2009, Paper CTuA5.
  • 5Li C, Sun T, Kelly K F, et al. A compressive sensing andunmixing scheme for hyperspectral data processing[J]. IEEETransactions on Image Processing, 2012, 21(3): 1200-1210.
  • 6Duarte M F and Baraniuk R G. Kronecker compressivesensing[J]. IEEE Transactions on Image Processing, 2012,21(2): 494-504.
  • 7Golbabaee M and Vandergheynst P. Joint trace/TV normminimization: a new efficient approach for spectralcompressive imaging[C]. 19th IEEE International Conferenceon Image Processing, Orlando, USA, 2012: 933-936.
  • 8Shu X and Ahuja N. Imaging via three-dimensionalcompressive sampling (3D CS) [C]. 13th IEEE InternationalConference on Computer Vision (ICCV), Barcelona, Spain,2011: 439-446.
  • 9Sun Ting, Li Cheng-bo, Zhang Yin, et al. Compressivehyperspectral acquisition and endmember umiiixing[J]. SPIE,2011,8165: 0D1-0D12.
  • 10August Y, Vachman C, Rivenson Y, et al.. Compressivehyperspectral imaging by random separable projections inboth the spatial and the spectral domains [J]. Applied Optics,2013, 52(10): D46-D54.

共引文献75

同被引文献21

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部