摘要
该文针对室内环境下的宽间距多声源到达时间差(TDOA)估计问题,研究了一种基于近似核密度估计(KDE)的无模糊算法。根据声频信号的短时频谱稀疏性,利用相关性检测(CT)提取单个声源能量占优的时频支撑域,进而将观测信号的归一化互功率谱(NCS)所构建的近似核函数通过累加平均削弱室内混响的干扰,同时引入多阶段(MS)分频带处理有效解决宽间距时的空域模糊。理论推导及仿真研究验证了该算法是一种稳健的室内无模糊多声源TDOA估计算法。
For Time Difference Of Arrival(TDOA) estimation of multiple sound sources with wide spacing under indoor environment, an unambiguous algorithm based on approximated Kernel Destiny Estimator(KDE) is studied. According to the short-time spectral sparseness of audio signals, the time-frequency bin with energy dominance of a single source is extracted from Coherence Test(CT), then an approximated kernel function constructed of Normalized Cross-Spectrum(NCS) of obtained signals is used to weaken the interference of indoor reverberation with cumulative average, while adding Multi-Stage(MS) to divide the frequency band, the spatial ambiguity with wide spacing can be solved effectively. This algorithm is verified as an unambiguous TDOA estimation algorithm of multi-source under indoor environment by both theoretical derivation and simulation results.
出处
《电子与信息学报》
EI
CSCD
北大核心
2016年第5期1143-1150,共8页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61171167
61401203)
江苏省自然科学基金(BK20130776)~~
关键词
语音信号处理
麦克风阵列
归一化互功率谱
相关性检测
近似核密度函数
无模糊到达时间差估计
Speech signal processing
Microphone array
Normalized Cross-power Spectrum(NCS)
Coherence Test(CT)
Approximate kernel density function
Unambiguous Time Difference Of Arrival(TDOA) estimation