期刊文献+

基于宽带突发单载波频域均衡传输的时域精细信道估计方法 被引量:4

Time-domain Fine Channel Estimation Based on Broadband Burst Single-carrier Frequency Domain Equalization Transmission
下载PDF
导出
摘要 单载波频域均衡(SC-FDE)是宽带无线通信系统中一种具有竞争力的解决方案,获得了广泛的关注和研究。SC-FDE方案不仅抗多径能力出色、复杂度低,且具有比正交频分复用(OFDM)信号更低的峰均比值。在突发SCFDE系统中,接收机需要利用训练序列快速获取信道的特征信息,以避免解调性能损失。传统的基于训练序列的信道估计方法并不适合宽带猝发SC-FDE系统,难以兼顾估计准确性和复杂度。该文提出一种基于时域训练序列的精细信道估计方法。该方法利用时域PN序列得到信道参数的最大似然估计值,并利用信道稀疏的特征,根据信道噪声强度对信道估计值进行噪声抑制处理。仿真表明:与传统信道估计方法相比,该信道估计方法能取得更高的估计精度,且具有较低的实现复杂度。 Single Carrier-Frequency Domain Equalization(SC-FDE) is a competitive alternative for broadband wireless communication systems, which has attracted wide attention and extensive research. As an effective technical solution to cope with multipath effects, SC-FDE shows low complexity and has low signal peak to average power ratio compared with OFDM signals. In burst SC-FDE systems, channel information is required at the receivers to avoid the performance loss of demodulations. Traditional channel estimation methods based on training sequences are not very suitable for broadband burst SC-FDE system. In this paper, a fine channel estimation method based on the time-domain training sequence is proposed. Channel parameters are obtained with the aid of time domain PN sequence based on maximum likelihood criteria. Besides, the noise suppression process is performed for channel estimation values on account of the channel noise strength. Simulation results demonstrate that the proposed channel estimation method can significantly reduce the Bit Error Rate(BER) of signal reception while maintaining low realization complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1166-1172,共7页 Journal of Electronics & Information Technology
基金 国家973科技项目(2012CB316000) 国家重大专项(2015ZX03002008) 国家电网项目([2015]404-41)~~
关键词 无线通信 单载波频域均衡 突发传输 信道估计 训练序列 Wireless communication Single Carrier-Frequency Domain Equalization(SC-FDE) Burst transmission Channel estimation Training sequence
  • 相关文献

参考文献16

  • 1GOLDSMITH A. Wireless Communications[M]. Cambridge University Press, New York, 2005: 316-319.
  • 2SOUTO N, DINIS R, and SILVA J C. Impact of channel estimation errors on SC-FDE systems[J]. IEEE Transactions on Communications, 2014, 62(5): 1530-1540.
  • 3WANG J, YANG Z X, PAN C Y, et al. Iterative padding subtraction of the PN sequence for the TDS-OFDM over broadcast channels[J]. IEEE Transactions on Consumer Electronics, 2005, 51(4): 1148-1152.
  • 4LARSSON E G, LIU G, LI J, et al. Joint symbol timing and channel estimation for OFDM based WLANs[J]. IEEE Communications Letters, 2001, 5(8): 325-327.
  • 5FERNANDEZ-Getino GARCIA M J, PAEZ-Borrallo J M, and ZAZO S. DFT-based channel estimation in 2D-pilot- symbol-aided OFDM wireless systems[C]. Proceedings of 2001 IEEE Vehicular Technology Conference (VTC), Rhodes Island, Greece, 2001, 2: 810-814.
  • 6KANG Y, KIM K, and PARK H. Efficient DFT-based channel estimation for OFDM systems on multipath channels [J]. IET Communications, 2007, 1(2): 197-202.
  • 7YANG F, WANG J, WANG J, et al. Novel channel estimation method based on PN sequence reconstruction for Chinese DTTB system[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1583-1589.
  • 8MA X L, FAN T L, and DU Y F. An improved DFT-based channel estimation algorithm for OFDM system on time- varying multipath fading channels[J]. Advanced Materials Research, 2014, 989: 3786-3789.
  • 9XIONG X, JIANG B, GAO X, et al. DFT-based channel estimator for OFDM systems with leakage estimation[J]. IEEE Communications Letters, 2013, 17(8): 1592-1595.
  • 10KIM K J, HWANG H G, CHOI K J, et al. Low-complexity DFT-based channel estimation with leakage nulling for OFDM systems[J]. IEEE Communications Letters, 2014, 18(3): 415-418.

二级参考文献18

  • 1Tandur D, Duplicy J, Arshad K, et al.. Cognitive radio systems evaluation: measurement, modeling, and emulation approach[J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 77-84.
  • 2Zhou X, Li G, and Sun G. Multiuser spectral precoding for OFDM-based cognitive radio systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 345-352.
  • 3Bajwa W, Haupt J, Sayeed A, et al.. Compressed channelsensing: a new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058 -1076.
  • 4Berger C, Wang Z, Huang J, et al.. Application of compressive sensing to sparse channel estimation [J]. IEEE Communications Magazine, 2010, 48(11): 164-174.
  • 5Qi C and Wu L. Application of compressed sensing to DRM channel estimation[C]. IEEE 73rd Vehicular Technology Conference (VTC-Spring 2011), Budapest, Hungary, 2011: 1-5.
  • 6Meng J, Yin W, Li Y, et al.. Compressive sensing basedhigh-resolution channel estimation for OFDM system [J]. IEEE Journal on Selected Topics in Signal Processing, 2012, 6(1): 15-25.
  • 7Hu D, He L, and Wang X. An efficient pilot design method for OFDM-based cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(4): 1252 -1259.
  • 8Manasseh E, Ohno S, and Nakamoto M. Pilot design for noncontiguous spectrum usage in OFDM-based cognitive radio networks[C]. European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 2012: 465-469.
  • 9Tong L, Sadler B, and Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing[J]. IEEE Signal Processing Magzaine, 2004, 21(6): 12-25.
  • 10Candes E J and Tao T. Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.

共引文献25

同被引文献29

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部