期刊文献+

基于感兴趣脑区LASSO-Granger因果关系的脑电特征提取算法 被引量:9

Feature Extraction of Electroencephalography Based on LASSO-Granger Causality Between Brain Region of Interest
下载PDF
导出
摘要 该文将脑功能网络引入到脑电特征提取的研究中,提出一种基于感兴趣脑区LASSO-Granger因果关系的新方法,克服了当前基于孤立脑区的研究方法的不足。先利用主成分分析提取各感兴趣区的最大主成分,然后计算它们之间的LASSO-Granger因果度量,并将其作为特征向量,最后输入支持向量机分类器,对BCI Competition IV dataset 1中的4组数据进行分类识别。结果表明,基于感兴趣脑区间LASSO-Granger因果关系分析和支持向量机分类器的方法对不同的运动想象任务识别率较高,提供了新的研究思路。 Brain functional network is introduced to feature extraction of Electro Encephalo Graphy(EEG), and a novel method is proposed based on Least Absolute Shrinkage and Selection Operator(LASSO)-Granger causality between Region Of Interest(ROI) in the brain, in order to overcome the inherent deficiencies of research methods based on isolated brain region. Firstly, the maximum principal component of ROIs is extracted by Principal Component Analysis(PCA), and then causality values between ROIs are calculated by LASSO-Granger. Finally, the values are used as the input vector for Support Vector Machine(SVM), and then four datasets of BCI Competition IV Dataset 1 are used for classification.Experimental results show that different motor imagery tasks are successfully identified by the method of SVM classifier combined with feature extraction which is based on LASSO-Granger causality between the brain region of interest(ROIs). This method provides a new idea for the study of extracting EEG features.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第5期1266-1270,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61201302 61172134) 国家留学基金(201308330297) 浙江省自然科学基金(LY15F010009)~~
关键词 脑功能网络 LASSO-Granger 感兴趣脑区 特征提取 Brain functional network LASSO-Granger Region Of Interest(ROI) Feature extraction
  • 相关文献

参考文献16

  • 1ARBONELL F, NAGANO-SAITO A, LEYTON M, et al. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks[J]. Neuropharmacology, 2014, 84: 90-100.
  • 2闫铮,高小榕,应俊.基于认知功能连接的信息流增益计算方法及应用[J].电子与信息学报,2014,36(11):2756-2761. 被引量:6
  • 3GRABBERR L, JOLA C, BERRA G, et al. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis[J]. NeuroRehabilitation, 2015, 37(2): 263-271.
  • 4DING M, CHEN Y, and BRESSLER S L. Granger causality: basic theory and application to neuroscience[J]. Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, 2006, 17: 437-460.
  • 5吴明权,李海峰,马琳.单通道脑电信号中眼电干扰的自动分离方法[J].电子与信息学报,2015,37(2):367-372. 被引量:15
  • 6吕俊,谢胜利,章晋龙.脑-机接口中基于ERS/ERD的自适应空间滤波算法[J].电子与信息学报,2009,31(2):314-318. 被引量:14
  • 7李卫娜,郑小林,吴南,侯文生,徐文鑫,吴国材,冯华.应用因果分析方法对癫痫发作间期头皮脑电信号进行致痫灶定侧[J].国际生物医学工程杂志,2013,36(5):261-265. 被引量:1
  • 8EPSTEIN C M, ADHIKARI B M, GROSS R, et al. Application of high-frequency Granger causality to analysis of epileptic seizures and surgical decision making[J]. Epilepsia, 2014, 55(12): 2038-2047.
  • 9NICOLAOU N, HOURR S, ALEXANDROU P, et al. EEG- based automatic classification of ‘awake’ versus ‘anesthetized’ state in general anesthesia using Granger causality[J]. PLoS One, 2012, 7(3): e33869.
  • 10ARNOLD A, LIU Y, and ABE N. Temporal causal modeling with graphical granger methods[C]. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2007: 66-75.

二级参考文献64

  • 1Lemm S, Schafer C, and Curio G. BCI competition 2003-data set Ⅲ: Probabilistic modeling of sensorimotor μ rhythms for classification of imaginary hand movements [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1077-1080.
  • 2Li Y Q and Guan C T. A semi-supervised SVM learning algorithm for joint feature extraction and classification in brain computer interfaces [C]. The 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, Aug.30-Sep.3, 2006: 2570-2573.
  • 3Lemm S, Blankertz B, and Curio G, et al.. Spatio-spectral filters for improving the classification of single trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2005, 52(9): 1541-1548.
  • 4McFarland D J, Anderson C W, and Muller K R, et al.. BCI meeting 2005-workshop on BCI signal processing: Feature extraction and translation [J]. IEEE Trans. on Neural and Rehabilitation Systems Engineering, 2006, 14(2): 135-138.
  • 5Hammon P S and deSa V R. Preprocessing and meta-classification for brain- computer interfaces [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(3): 518-525.
  • 6Wang Y J, Zhang Z G, and Li Y, et al.. BCI competition 2003-data set Ⅳ: An algorithm based in CSSD and FDA for classifying single-trial EEG [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1081-1086.
  • 7Liao X, Yao D Z, and Wu D, et al.. Combining spatial filters for the classification of single-triM EEG in a finger movement task [J]. IEEE Trans. on Biomedical Engineering, 2007, 54(5): 821-831.
  • 8Friedman J, Hastie T, and Tibshirani R. Additive logistic regression: A statistical view of boosting [J]. The Annals of Statistics, 2000, 28(2): 337-407.
  • 9Blankertz B, Muller K R, and Curio G, et al.. The BCI competition 2003: Progress and perspectives in detection and discrimination of EEG single trials [J]. IEEE Trans. on Biomedical Engineering, 2004, 51(6): 1044-1051.
  • 10Wei Q G, Gao X G, and Gao S K. Feature extraction and subset selection for classifying single-trial ECoG during motor imagery [C]. The 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, Aug.30-Sep.3, 2006: 1589-1592.

共引文献30

同被引文献56

引证文献9

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部