期刊文献+

干湿交替对作物根际特征及铁膜形成的影响研究进展 被引量:13

Impacts of Drying-wetting Cycles on Changes of Rhizosphere Characteristic and the Formation of Iron Plaque: A Review
下载PDF
导出
摘要 铁膜普遍存在于水生植物的根系表面,根际周围Fe^(2+)的浓度和根系氧化力决定了根表铁膜的数量。干湿交替是农业生产中常用的灌溉技术。在干湿交替过程中,水分和氧气含量的变化导致根际土壤发生一系列物理、化学和生物学变化,从而对根表铁膜的形成产生影响。本文综述了干湿交替过程对根际特征变化的影响,分析了根表铁膜的形成条件、化学组成与空间结构和根表铁膜的形成过程,并在此基础上探讨了干湿交替对铁膜形成的影响以及干湿交替诱导铁膜形成的可能机制。最后对干湿交替诱导铁膜形成的研究方法与应用前景进行了展望。 Iron plaque commonly forms on the surface of hydrophytes roots. The amount of iron plaque on the root surface depends on rhizosphere Fe2+ concentration and oxidative power of plant roots. Alternate drying and wetting technique has been widely used in the agriculture production. During the processes of drying and wetting, variations of soil moisture and oxygen content resulted in changes of soil physical, chemical and biological properties in rhizosphere, which influenced the formation of iron plaque. Impacts of drying-wetting cycles on rhizospheric characteristics were summarized in this paper. The chemical components and spatial structure of iron plaque were analyzed. The process of iron plaque formation and the factors affected the formation of iron plaque were also discussed. Based on the above discussion, the possible mechanisms for iron plaque formation as influenced by drying-wetting cycles were proposed. Finally the methods for studying iron plaque formation and its application in future were prospected.
出处 《土壤》 CAS CSCD 北大核心 2016年第2期225-234,共10页 Soils
基金 国家自然科学基金项目(31372125 31071847) 广州市科技计划项目(2014J4100240)资助
关键词 干湿交替 铁膜 根际特征 Drying-wetting cycles Iron plaque Rhizosphere characteristic
  • 相关文献

参考文献100

  • 1Ma J F, Ling H Q. Iron for plants and humans[J]. Plant andSoil, 2009, 325(1/2): 1–3.
  • 2Weber K A, Achenbach L A, Coates J D. Microorganismspumping iron: Anaerobic microbial iron oxidation andreduction[J]. Nature Reviews Microbiology, 2006, 4(10):752–764.
  • 3曹慧,韩振海,许雪峰,张勇.高等植物的铁营养[J].植物生理学通讯,2002,38(2):180-186. 被引量:33
  • 4Ma J F. Plant root responses to three abundant soil minerals:Silicon, aluminum and iron[J]. Critical Reviews in PlantSciences, 2005, 24(4): 267–281.
  • 5Cronk J K, Fennessy M S. Wetland plants: Biology andecology[M]. Boca Raton, FL, USA: CRC Press, 2001.
  • 6Piao S L, Ciais P, Huang Y, et al. The impacts of climatechange on water resources and agriculture in China[J].Nature, 2010, 467(7311): 43–51.
  • 7Lampayan R M, Samoy-Pascual K C, Sibayan E B, et al.Effects of alternate wetting and drying (AWD) thresholdlevel and plant seedling age on crop performance, waterinput, and water productivity of transplanted rice in CentralLuzon, Philippines[J]. Paddy and Water Environment, 2014,13(3): 1–13.
  • 8Dodd I C, Puertolas J, Huber K, et al. The importance ofsoil drying and re-wetting in crop phytohormonal andnutritional responses to deficit irrigation[J]. Journal ofExperimental Botany, 2015, doi: eru532.
  • 9Pires L F, Villanueva F C, Dias N M, et al. Chemicalmigration during soil water retention curve evaluation[J].Anais da Academia Brasileira de Ciências, 2011, 83(3):1 097–1 108.
  • 10Pires L F, Prandel L V, Saab S C. The effect of wetting anddrying cycles on soil chemical composition and theirimpact on bulk density evaluation: An analysis by usingXCOM data and gamma-ray computed tomography[J].Geoderma, 2014, 213: 512–520.

二级参考文献330

共引文献326

同被引文献213

引证文献13

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部