期刊文献+

基于卷积神经网络的监控视频人数统计算法 被引量:6

A surveillance video crowd counting algorithm based on convolutional neural network
下载PDF
导出
摘要 监控视频中人数统计是现代安防的重要任务之一,具有较高的研究意义和应用价值.虽然近年来取得较大的进展,但仍无法很好地解决监控场景人数统计精度、高清图像耗时问题.为此,作者提出一种基于卷积神经网络与岭回归联合的人数统计方法.通过卷积神经网络回归图像中人头中心点获得人群密度分布特征图,然后使用岭回归模型分析人群密度分布特征图得到该帧图像对应的人数.作者提出的算法通过在多组视频图像上进行了测试,并与经典算法做了比较.实验结果验证了作者方法的有效性. Crowd counting in surveillance video is one of the important modern security tasks with high research significance and application value. It has made great progress in recent years, but still has not solved the problems about accuracy of crowd counting in surveillance video and time consuming of high resolution images. Therefore, the crowd counting algo- rithm by incorporating convolutional neural network and ridge regression was proposed in this paper. We could get the crowd density map from regression of the centers of heads through convolutional neural network, then used ridge regression model to analyze the crowd density map to got the number of people in current frame. The proposed algorithm had been tested on several videos and compared with several classical algorithms. The experimental performance validated the effectiveness of the proposed method.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2016年第3期22-28,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家863计划资助项目(2014AA015104) 国家自然科学基金资助项目(61502006 61502003) 安徽省自然科学基金资助项目(1308085MF97)
关键词 卷积神经网络 人数统计 监控视频 岭回归 convolutional neural network crowd counting surveillance video ridge regression
  • 相关文献

参考文献13

  • 1AHUJA N,TODOROVIC S.Extracting texels in 2.1 D natural textures[C]//Computer Vision,2007,ICCV,IEEE 11th International Conference on IEEE,2007:1-8.
  • 2RABAUD V,BELONGIE S.Counting crowded moving objects[C]//Computer Vision and Pattern Recognition,IEEE Computer Society Conference on,IEEE,2006,1:705-711.
  • 3刘红,宋茹,王保兴.基于个体特征和纹理特征的视频人数统计算法[J].安徽大学学报(自然科学版),2015,39(3):47-50. 被引量:4
  • 4PTZOLD M,EVANGELIO R H,SIKORA T.Counting people in crowded environments by fusion of shape and motion information[C]//Advanced Video and Signal Based Surveillance(AVSS),Seventh IEEE International Conference on,IEEE,2010:157-164.
  • 5ZHANG X,SEXTON G.Automatic human head location for pedestrian counting[C]//Image Processing and Its Applications,Sixth International Conference on,IET,1997,2:535-540.
  • 6ZU K,LIU F,LI Z.Counting pedestrian in crowded subway scene[C]//Image and Signal Processing,CISP'09,2nd International Congress on,IEEE,2009:1-4.
  • 7SUBBURAMAN V B,DESCAMPS A,CARINCOTTE C.Counting people in the crowd using ageneric head detector[C]//Advanced Video and Signal-Based Surveillance(AVSS),IEEE Ninth International Conference on,IEEE,2012:470-475.
  • 8VIOLA P,JONES M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154.
  • 9RYAN D,DENMAN S,SRIDHARAN S,et al.An evaluation of crowd counting methods,features and regression models[J].Computer Vision and Image Understanding,2015(13):1-17.
  • 10LEMPITSKY V,ZISSERMAN A.Learning to count objects in images[C]//Advances in Neural Information Processing Systems,2010:1324-1332.

二级参考文献40

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献626

同被引文献37

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部