期刊文献+

微热板中微纳空气间隙传热特性研究

Research on thermal conductance characteristics of submicron gas gap of micro-hotplate
下载PDF
导出
摘要 在微热板(MHP)的应用过程中,其本身的热特性是影响器件性能的重要因素之一,同时加热电极和衬底之间的气体间隙传热是影响MHP热特性的一个关键因素。采用标准CMOS工艺和简单的postCMOS工艺,设计制作了一种具有550 nm空气间隙的MHP,在热稳态下利用MHP的自加热效应测得了空气间隙的传热热导,结果表明:截面积为35μm×35μm、厚550 nm的空气间隙的热导为6.74×10-5W/K,MHP的整体热导为7.51×10-5W/K,可见在MHP热耗散中,空气间隙传热占主导地位。 In recent years,micro-hotplate( MHP) is widely used to make thermal sensors,heating compo-nents,infrared emitters,and power generators. In MHP application,its own thermal characteristics is one of the important factors that affect device performance and as well as the heat transfer characteristics of gas gap between heating electrode and substrate is a key factor affecting thermal characteristics of MHP. Using standard CMOS technology and simple post-CMOS process,a MHP with sectional area of 35 μm × 35 μm and thickness of 550 nm air gap is designed. Using self-heating effect of MHP,thermal conductance of gas gap is measured in thermal steady state.The results show that gas gap conductance is 6. 74 × 10^-5W / Km and the overall conductance is 7. 51 × 10^-5W /Km,which indicates that gas gap conductance dominates the heat loss of MHP.
出处 《传感器与微系统》 CSCD 2016年第5期9-12,15,共5页 Transducer and Microsystem Technologies
关键词 微尺度 空气间隙 微热板 热传导 microscale gas gap micro-hotplate heat conduction
  • 相关文献

参考文献18

  • 1Chen C N,Huang W C.A CMOS-MEMS thermopile with low thermal conductance and a nearperfect emissivity in the 8-14wavelength range[J].Electron Device Letters,IEEE,2011,32(1):96-98.
  • 2Neuzil P,Liu Y,Feng H H,et al.Micromachined bolometer with singlecrystal silicon diode as temperature sensor[J].Electron Device Letters,IEEE,2005,26(5):320-322.
  • 3Lenggenhager R,Baltes H,Peer J,et al.Thermoelectric infrared sensors by CMOS technology[J].IEEE Electron Device Letters,1992,13(9):454-456.
  • 4Semancik S,Cavicchi R,Wheeler M,et al.Microhotplate platforms for chemical sensor research[J].Sensors and Actuators B:Chemical,2001,77(1):579-591.
  • 5Suehle J S,Cavicchi R E,Gaitan M,et al.Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing[J].Electron Device Letters,IEEE,1993,14(3):118-120.
  • 6李立杰,梁春广.微机械热对流加速度计[J].Journal of Semiconductors,2001,22(4):465-468. 被引量:13
  • 7Shie J S,Chou B C,Chen Y M.High performance Pirani vacuum gauge[J].Journal of Vacuum Science&Technology A,1995,13(6):2972-2979.
  • 8Denlinger D W,Abarra E N,Allen K,et al.Thin film microcalorimeter for heat capacity measurements from 1.5 to 800 K[J].Review of Scientific Instruments,1994,65(4):946.
  • 9Parameswaran M,Robinson A M,Blackburn D L,et al.Micromachined thermal radiation emitter from a commercial CMOS process[J].Electron Device Letters,IEEE,1991,12(2):57-59.
  • 10Jaeggi D,Baltes H,Moser D.Thermoelectric AC power sensor by CMOS technology[J].Electron Device Letters,IEEE,1992,13(7):366-368.

二级参考文献61

  • 1丁国良,张春路,陈芝久.空调动态负荷计算的新型谐波法[J].上海交通大学学报,1996,30(8):100-103. 被引量:5
  • 2蓝元良,汤广福,印永华,周孝信,辛玉梅.大功率晶闸管热阻抗分析方法的研究[J].中国电机工程学报,2007,27(19):1-6. 被引量:37
  • 3Luo Z H. A thermal model for IGBT modules and its implementation in a real time simulator[D]. Pittsburgh, USA: University of Pittsburgh, 2002.
  • 4Bryant A T, Parker-Allotey N A, Palmer P R. The use of condition maps in the design and testing of power electronic circuits and devices[J]. IEEE Transactions on Industry Applications, 2007, 43(4): 902-910.
  • 5Fabis P M, Shun D, Windisehmann H. Thermal modeling of diamond-based power electronics package [C] // Fifteenth IEEE Semi-thermal Symposium. Northboro, USA: IEEE, 1999: 98- 104.
  • 6Masana F N. A new approach to dynamic thermal modelling of semiconductor packages [ J ]. Micro-electronics Reliability, 2001, 41(3): 901-912.
  • 7Drofenik U, Kolar J W. Teaching thermal design of power electronic systems with web-based interactive educational software [C]//IEEE Applied Power Electronics Conference and Exposition 2003. Miami, Florida, USA: IEEE, 2003: 1029-1036.
  • 8Shammas N Y A, Rodriguez M P, Plumpton A T, et al. Finite element modelling of thermal fatigue effects in IGBT modules [J]. IEE Proceedings--Circuits and Devices System, 2001, 148(2) : 95-100.
  • 9Reichl J, Berning D, Hefner A, et al. Six pack IGBT dynamic electro-thermal model: parameter extraction and validation[C] //IEEE Applied Power Electronics Conference and Exposition 2004. Anaheim, CA, USA: IEEE, 2004: 246-251.
  • 10Infineon. Thermal equivalent circuit models[M]. 1st ed. Warstein, Germany: Infineon, 2008.

共引文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部