期刊文献+

核多元基因选择和极限学习机在微阵列分析中的应用 被引量:2

Application of kernel-based multiple gene selection method and extreme learning machine in microarray analysis
下载PDF
导出
摘要 针对微阵列数据样本量少、维度高的特点,结合当前数据降维方法中没有考虑特征与特征之间相关性的缺点,提出一种核最小二乘的特征基因选择方法。将解释变量空间通过非线性映射转换到高维空间上,再在高维空间上进行最小二乘回归,并采用极限学习机进行训练和预测。结果表明:对三种经典数据集的分类精度分别达到90.47%,88.89%,88.23%,高于传统的机器学习算法,充分表明本方法的优越性。 As quantity of microarray data sample is little and dimension of each sample is high, combined with disadvantages that in current data dimension reduction methods, correlation between features is not considered, put forward a kind of kernel-based least squares method for feature gene selection. Map explaining variable space to high dimension space, via nonlinear mapping transformation, and then carry out least-squares regression in high dimensional space; use extreme learning machine for training and predicting. The results show that c]assification precision of the three kinds of classic data set is 90.47 %, 88.89 % , 88.23 %, which is higher than traditional machine learning algorithms, which fully demonstrates superiority of this method.
出处 《传感器与微系统》 CSCD 2016年第5期146-148,153,共4页 Transducer and Microsystem Technologies
关键词 微阵列分类 基因选择 核最小二乘 极限学习机 microarray classification gene selection kernel least squares extreme learning machine
  • 相关文献

参考文献11

  • 1于化龙,高尚,赵靖,秦斌.基于过采样技术和随机森林的不平衡微阵列数据分类方法研究[J].计算机科学,2012,39(5):190-194. 被引量:9
  • 2金益,姜真杰.核主成分分析与典型相关分析相融合的人脸识别[J].计算机应用与软件,2014,31(1):191-193. 被引量:1
  • 3Sun S,Peng Q,Shakoor A.A kernel-based multivariate feature selection method for micro-array data classification[J].Plo S one,2014,9(7):102541.
  • 4Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:Theory and applications[J].Neuro-computing,2006,70(1):489-501.
  • 5张丽娟,李舟军.微阵列数据癌症分类问题中的基因选择[J].计算机研究与发展,2009,46(5):794-802. 被引量:19
  • 6李强,石陆魁,刘恩海,王歌.基于流形学习的基因微阵列数据分类方法[J].郑州大学学报(工学版),2012,33(5):121-124. 被引量:1
  • 7Chacko B P,Krishnan V R V,Raju G,et al.Handwritten character recognition using wavelet energy and extreme learning machine[J].International Journal of Machine Learning and Cybernetics,2012,3(2):149-161.
  • 8Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 9Wang Y,Klijn J G M,Zhang Y,et al.Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer[J].The Lancet,2005,365(9460):671-679.
  • 10Bhattacharjee A,Richards W G,Staunton J,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses[C]∥Proceedings of the National Academy of Sciences,2001:13790-13795.

二级参考文献96

共引文献26

同被引文献11

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部