期刊文献+

基于BP神经网络的爆破参数优化 被引量:6

Optimization of Blasting Parameters Based on BP Neural Network
原文传递
导出
摘要 针对露天矿山台阶爆破效果欠佳造成后续工艺效率不高的现象,以某露天矿为依托,利用BP神经网络系统建立爆破参数优化预测模型,对现场爆破参数进行优化,对比优化前后的现场爆破效果证明模型优化的爆破参数大大改善了爆破效果,100 cm以上大块率减小6.88个百分点,60 cm以下块度增加了35.94个百分点,为提高铲装效率创造了条件。 Due to the poor effect in subsequent process of bench blasting,an optimization model of the blasting parameters was established by the BP neural network system based on an openpit mine. Then,the blasting parameters were optimized,and the blasting effects before and after optimization were compared. The results proved that the optimized parameters based on the model had improved the blasting effect obviously. The boulder yield of the ores with diameters over 100 cm reduced by 6. 68 percent points,and boulder yield of the ores with diameters less than 60 cm increased by 35. 94 percent points,which created favorable conditions for improving the loading efficiency.
出处 《矿业研究与开发》 CAS 北大核心 2016年第4期19-21,共3页 Mining Research and Development
基金 国家自然科学基金项目(51404111,51504102)
关键词 台阶爆破 爆破参数 BP神经网络 大块率 Bench blasting Blasting parameters BP neural network Boulder yield
  • 相关文献

参考文献4

二级参考文献18

共引文献26

同被引文献44

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部