期刊文献+

聚合风险模型下指数保费的非参数估计 被引量:1

The Nonparametric Estimate of Exponential Premium Under Collective Risk Models
下载PDF
导出
摘要 在聚合风险模型的假设下,研究了聚合风险下指数保费的非参数估计,证明了估计的强相合性和渐近正态性.最后通过数值模拟的方法验证了估计的收敛速度及渐近正态性. The exponential premium principle is one of the most important premium principles and is wide- ly applied in non-life insurance actuarial science. In this paper, the nonparametric estimate of exponential premium is investigated under collective risk models. In addition, the estimator is proved strongly consist- ent and asymptotically normal. Finally, a numerical simulation method is used to verify the estimated speed of convergence, and the asymptotic normality of the estimator is checked in the simulations.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第5期100-105,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(71361015) 教育部人文社科基金项目(15YJC910010) 中国博士后科学基金项目(2013M540534) 江西省研究生创新基金项目(YC2014-S162)
关键词 聚合风险模型 指数保费 非参数估计 相合性 渐近正态性 collective risk model exponential premium nonparametric estimate consistency asymptotic normality
  • 相关文献

参考文献10

  • 1GERBER H U. On Additive Premium Calculation Principles [J]. Astin Bulletin, 1974,8(1) : 215-222.
  • 2DENUIT M. The Exponential Premium Calculation Principle Revisted [J]. Astin Bulletin, 1999, 29(2) : 215-226.
  • 3YANG J,ZHOU S,ZHANG Z. The Compound Poisson Random Variable’s Approximation to the Individual Risk Model[J]. Insurance: Mathematics and Economics, 2005,36(1) : 57 - 77.
  • 4HERNANDEZ A, FERNANDEZ-SANCHEZ M P,GOMEZ E. On the Independence between Risk Profiles in the Com-pound Collective Risk Actuarial Model [J]. Mathematics and Computers in Simulation, 2012? 82(8) : 1419 - 1431.
  • 5施久玉.一类聚合风险模型[J].运筹与管理,2004,13(6):53-60. 被引量:6
  • 6方婧,章溢,温利民.聚合风险模型下的信度估计[J].江西师范大学学报(自然科学版),2012,36(6):607-611. 被引量:11
  • 7YOUNG V R. Premium Principles [M]. Encyclopedia of Actuarial Science. Hoboken: John Wiley and Sons,2006.
  • 8FURMAN E, ZITIKIS R. Weighted Premium Calculation Principles [J]. Insurance: Mathematics and Economics, 2008,42(1): 459 - 465.
  • 9BUHLMANN H. An Economic Premium Priciple [J]. Astin Bulletin, 1980,11(1) : 52 - 60.
  • 10Li Min WEN,Wei WANG,Jing Long WANG.The Credibility Premiums for Exponential Principle[J].Acta Mathematica Sinica,English Series,2011,27(11):2217-2228. 被引量:9

二级参考文献27

  • 1邓国华.风险非同质时索赔次数的统计研究[J].江西师范大学学报(自然科学版),2004,28(3):228-231. 被引量:5
  • 2Buhlmann, H.: Experience rating and credibility. Astin Bulletin, 4, 199-207 (1967).
  • 3Norberg, R.: Credibility Theory. In: Encyclopedia of Actuarial Science, Wiley, Chichester, UK, 2004.
  • 4Buhlmann, H., Gisler, A.: A Course in Credibility Theory and its Applications, Springer, Netherlands, 2005.
  • 5Asmussen S.: Ruin Probabilities, Singapore: World Scientific Publishing Co., 2000.
  • 6Gerber, H. U.: An Introduction to Mathematical Risk Theory, Philadelphia: S. S. Heubner Foundation Monograph Series 8, 1979.
  • 7Gerber, H. U.: Credibility for Esscher premium. Mitleilungen der VSVM, 80(3), 307-312 (1980).
  • 8Heilmann, W. R.: Decision theoretic foundations of credibility theory. Insurance: Mathematics and Eco- nomics, 8, 77-95 (1989).
  • 9Schmidt, K. D., Timpe[, M.: Experience rating under weighted squared error loss. Bliitter der DGVFM, 22(2), 289-307 (1995).
  • 10Wen, L., Wu, X., Zhao, X.: The credibility estimators under generalized weighted loss functions. Journal of Industrial and Management Optimization, 5(4), 893-910 (2009).

共引文献21

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部