期刊文献+

基于微博的电影首映周票房预测建模 被引量:4

Predicting Opening Weekend Box Office Prediction Based on Microblog
原文传递
导出
摘要 【目的】解决现有的票房预测模型由于数据受限等因素导致的无法实现在影片上映前进行票房预测这一问题。【方法】在获取微博评论的基础上,使用SVM识别出消费者的显式消费意图,即强正面评论;对传统的分类准则进行修正,构建基于How Net的中文微博情感词典,进而定义一个新的用户影响力特征;使用BP神经网络进行票房预测。【结果】实验结果表明,本文建立的模型能够较为准确地对电影首映周票房进行预测。【局限】由于语料不充分,本文构建的中文微博情感词典,可能会无法在所有的电影微博评论中表现出较好的分类效果;此外也没有建立一个能够在电影上映周期内动态预测票房的票房预测模型。【结论】该模型能够有效地进行首映周票房预测,具有现实的可行意义。 [Objective] This study aims to solve the problems of the existing pre-release box office prediction models due to data constraints and other factors. [Methods] We first retrieved microblog comments, and then used SVM to identify explicit consumer intention, namely strong positive comments. Second, we modified the traditional sentiment classification schemes to build a Chinese microblog sentiment dictionary based on How Net. Finally, we defined a new user influence feature and used the BP neural network to predict box office. [Results] The proposed model could forecast the opening box office more accuately. [Limitations] Due to inadequate corpus, the sentiment dictionary may not work well for all microblog movie comments. A dynamic forecasting model was not established between the pre-release and post-release period. [Conclusions] The proposed model can effectively predict opening box office.
出处 《现代图书情报技术》 CSSCI 2016年第4期31-39,共9页 New Technology of Library and Information Service
基金 "管理科学与工程"省高校人文社科研究基地项目"基于用户节点属性的微博突发话题传播预测算法"(项目编号:GK140203204004/02) 2015年杭州电子科技大学研究生优秀学位论文培育基金项目"基于社交媒体的体验性商品销量预测-以票房预测为例"(项目编号:ZX150605304023)的研究成果之一
关键词 情感词典 情感分类 首映周票房预测 神经网络 Sentiment dictionary Sentiment classification Opening weekend box office prediction Neural network
  • 相关文献

参考文献18

  • 1尹裴,王洪伟,郭恺强.中文产品评论的“特征观点对”识别:基于领域本体的建模方法[J].系统工程,2013,31(1):68-77. 被引量:16
  • 2张闯,姜杨,吴铭,肖文君,李泰.基于社会化媒体节点属性的信息预测[J].北京邮电大学学报,2012,35(4):24-27. 被引量:7
  • 3Liu Y, Huang X, An A, et al.ARSA: A Sentiment-aware Model for Predicting Sales Performance Using Blogs [C]. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2007: 607-614.
  • 4Neelamegham R, Chintagunta P.A Bayesian Model to Forecast New Product Performance in Domestic and International Markets[J]. Marketing Science, 1999, 18(2): 115-136.
  • 5Elberse A, Eliashberg J.Demand and Supply Dynamics for Sequentially Released Products in International Markets: The Case of Motion Pictures[J]. Marketing Science, 2003, 22(3): 329-354.
  • 6Liu Y.Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue[J]. Journal of Marketing, 2006, 70(3): 74-89.
  • 7Sawhney M S, Eliashberg J.A Parsimonious Model for Forecasting Gross Box-office Revenues of Motion Pictures[J]. Marketing Science, 1996, 15(2): 113-131.
  • 8Eliashberg J, Shugan S M.Film Critics: Influencers or Predictors?[J]. Journal of Marketing, 1997, 61(2): 68-78.
  • 9Krider R E, Weinberg C B.Competitive Dynamics and the Introduction of New Products: The Motion Picture Timing Game[J]. Journal of Marketing Research, 1998, 35(1): 1-15.
  • 10Asur S, Huberman B A.Predicting the Future with Social Media [C]. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE Computer Society, 2010: 492-499.

二级参考文献98

  • 1宋双杰,曹晖,杨坤.投资者关注与IPO异象——来自网络搜索量的经验证据[J].经济研究,2011,46(S1):145-155. 被引量:154
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3刘群 李素建.基于《知网》的词汇语义相似度的计算.中文计算语言学,2002,17(2):59-76.
  • 4Tumey P. Thumbs up or thumbs down? semantic orientation applied to unsupervised classification of reviews [C] //Proc of the 40th Annual Meeting of the Association for Computational Linguistics. New,York: ACM, 2002: 417- 424.
  • 5Pang B, Lee L, Shivakumar V. Thumbs up? sentiment classification using machine learning techniques [C]//Proc of the 2002 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: ACL, 2002:79-86.
  • 6Wiebe J M. Learning subjective adjectives from corpora [C] //Proc of the 17th National Conf on Artificial Intelligence. Menlo Park: AAAI Press, 2000:735-740.
  • 7Hatzivassiloglou V, McKeown K R. Predicting the semantic orientation of adjectives [C]//Proc of the 35th Annual Meeting of the Association for Computational Linguistics and the 8th Conf of the European Chapter of the Association for Computational Linguistics. Stroudsburg. PA, USA: ACL, 1997:174-181.
  • 8Turney P, Littman M. Measuring praise and criticism: inference of semantic orientation from association [J]. ACM Trans on Information Systems, 2003, 21(4): 315-346.
  • 9Pang B, Lee L. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts [C] //Proc of the 42nd Annual Meeting on Association for Computational Linguistics. Srroudsburg, PA, USA: ACL. 2004:271-278.
  • 10Takamura H, Inui T, Okumura M. Extracting semantic orientations of words using Spin Model [C]//Proc of the 43rd Annual Meeting of the ACL. Stroudsburg, PA, USA: ACL, 2005:133-140.

共引文献128

同被引文献56

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部