摘要
该文针对复合材料变截面薄壁旋转轴在不同约束下的振动与稳定性问题,提出了一个动力学模型。基于变分渐进法和拉格朗日方程,推导了复合材料变截面薄壁转轴的自由振动方程。在转轴的结构模型中,综合考虑了扭转、拉伸和弯曲引起的截面翘曲的影响。采用伽辽金法,分析了截面按线性或者抛物线变化的变截面旋转轴的固有频率和临界转速,其中还考虑了一端固定一端自由和一端固定一端铰支两种边界条件以及复合材料铺层角的影响。此外,通过对比分析模型的计算结果与商用有限元软件ANSYS的结果,该文所提出的分析模型的有效性在一定程度上得到了验证。
A dynamic model is proposed to study the vibration and stability of thin-walled composite shafts of variable cross-section with different end constraints. The variational asymptotic method and Lagrange equations are employed to derive the free vibration equations for thin-walled composite shafts of variable cross-section. The structural model of the shafts is developed considering warping effects on the cross section caused by torsion, tension, and bending. Natural frequencies and critical spinning speeds are analyzed by the Galerkin method for tapered shafts having a cross-section varying linearly or parabolically, with the consideration of two types of end constraints, i.e. clamped-free and clamped-hinged support, as well as the effect of the ply angle of the composite laminates. Additionally, the analytical model presented in this work is verified and validated to a decisive extent by comparing its results with those obtained from the commercial finite element software ANSYS.
出处
《工程力学》
EI
CSCD
北大核心
2016年第5期18-24,33,共8页
Engineering Mechanics
基金
国家自然科学基金项目(11272190)
山东省科技大学人才引进计划科研启动基金项目(2013RCJJ028)
关键词
复合材料
转轴
变截面
固有频率
临界转速
composite material
spinning shaft
variable cross-section
natural frequency
critical speed