期刊文献+

基于多特征自适应融合的MeanShift目标跟踪方法 被引量:3

Mean Shift Object Tracking Based on Adaptive Multi-Features Fusion
下载PDF
导出
摘要 针对传统MeanShift算法特征单一,易受相似背景颜色的干扰并且无法处理目标快速运动的情况,提出一种基于多特征自适应融合的MeanShift目标跟踪方法,利用目标的颜色与纹理特征,并使用LBP纹理特征二值图作为掩模,去除图像中灰度值变化较小的区域的干扰。同时,结合Kalman滤波预测目标位置,解决目标的快速运动和遮挡问题。实验结果表明:该算法能满足实时跟踪的要求,并较好地解决相似背景颜色、遮挡、光照变化等问题。 The traditional MeanShift algorithm models the objects to be tracked with single color feature, which leads to that it is more prone to be disturbed by the similar color distribution in background, and the algorithm can 't deal with the fast moving objects. To address this problem, proposes a new method of Mean Shift object tracking based on adaptive multi-features fusion, which combines color feature and tex-ture feature in Mean Shift, and makes use of the LBP to form a mask to remove the area where the gray value has small changes to void distractions to objects. At the same time, the algorithm adds the Kalman that predict the location of the target to deal with the fast moving objects and occlusion. The experimental results show that the algorithm can meet the requirements of real-time tracking, and it can solve the problem of similar background color distribution, occlusion and illumination change.
作者 刘苗 黄朝兵
出处 《现代计算机(中旬刊)》 2016年第4期68-72,共5页 Modern Computer
关键词 目标跟踪 MEANSHIFT 颜色直方图 LBP KALMAN Target Tracking MeanShift Color Histogram LBP Kalman
  • 相关文献

参考文献11

  • 1G.Bradski, Computer Vision Face Tracking for Use in a Perceptual User Interface, Intel Technol. J, 1998,2(2) : 12-21.
  • 2D.Comaniciu, V. Ramesh,P. Meer, Kernel-Based Object Tracking,IEEE Trans.Patt. Anal. Mach. Intell,2003,25(5) :564-575.
  • 3Q.A. Nguyen, A. Robles-Kelly, C. Shen. Enhanced Kernel-Based Tracking for Monochromatic and Thermographic Video, Proc. IEEEConf. Video and Signal Based Surveillance, 2006 : 28-33.
  • 4BroxT, Rousson M,Deriche R.Colour, Texture, and Motion in Level Set Based Segmentation and Tracking[J], Image and VisionComputing, 2010,28 (3) :376-390.
  • 5王永忠,梁彦,赵春晖,潘泉.基于多特征自适应融合的核跟踪方法[J].自动化学报,2008,34(4):393-399. 被引量:56
  • 6T.Ojala, K. Valkealahti,E. Oja and M. Pietik Ainen, Texture Discrimination with Multi-Dimensional Distributions of Signed gray LevelDifferences, Patt. Recogn,201,34(3) :727-739.
  • 7OjalaT, Pietikainen M, Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Pat-tems[J]_ IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002,24 (7) :971-987.
  • 8PietikainenM, Ojala T, Xu Z. Rotation-Invariant Texture Classification Using Feature DistributionfJ], Pattern Recognition, 2000,33(1):43-52.
  • 9郑可飚,黄文清,张佐理,李艳芳.运动目标跟踪系统的遮挡问题处理[J].计算机工程与设计,2009,30(11):2816-2818. 被引量:6
  • 10Bamich0, Van Droogenbroeck M. ViBe: A Powerful Random Technique to Estimate the Background in Video Sequence[C]. Int. Conf.on Acoustics Speech and Signal Processing(ICASSP),2009,4: 945-948.

二级参考文献22

  • 1Koller D,Weber J,Malik J.Robust multiple car tracking with occlusion reasoning[C]. Proceedings of the European Conference on Computer Vision, 1994:189-196.
  • 2Pang C C,Lam W L,Yung H C.A novel method for resolving vehicle occlusion in a monocular traffic image sequence[J].IEEE Transactions on Intelligent Transportation Systems,2004, 5(3): 129-141.
  • 3Kanhere N K,Pundlik S J,Birchfield S T.Vehicle segmentation and tracking from a low-angle off-axis camera[J].IEEE Conference on Computer Vision and Pattern Recognition, 2005,2: 1152-1157.
  • 4Comaniciu D,Ramesh V, Meer P.Real-time tracking of non-rigid objects using mean shift[J]. IEEE Conference on Computer Vision and Pattern Recognition,2000,2:142-149.
  • 5Chan Y, Rui Y, Huang T S.JPDAF based HMM for real-time contour tracking [C]. Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001: 543-550.
  • 6Choi J H,Lee K H,Cha K C,et al.Vehicle tracking using template matching based on feature points[C].IEEE International Conference on Information Reuse and Integration,2006:573-577.
  • 7Senior A,Hampapur A, Tian Y L,et al.Appearance models for occlusion handling [J]. Image and Vision Computing, 2006,24: 1233-1243.
  • 8Chang T H,Gong S,Ong E J.Tracking multiple people under occlusion using multiple cameras[C].Proceedings 11th British Machine Vision Conference,2000.
  • 9Zhao T, Nevatia R. Bayesian human segmentation in crowded situations[J].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2003,2:459-466.
  • 10Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577

共引文献60

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部