期刊文献+

基于聚类集成的半监督多/高光谱图像分类方法 被引量:4

Semi-supervised Classification of Multi/Hyperspectral Images Based on Cluster Ensemble
下载PDF
导出
摘要 提出一种基于聚类集成的半监督多/高光谱图像分类方法。谱聚类是近年来出现的基于图论的、以相似性为基础的一类性能优越的聚类算法,能对任意形状分布的数据进行聚类,但对参数的变化比较敏感。聚类集成技术可有效提高单聚类算法的精度和稳定性,并具有良好的鲁棒性和泛化能力。算法利用聚类集成算法的优点并利用谱聚类的思想开发聚类集成算法的共识函数,将谱聚类作为聚类成员来构造聚类集成系统,使用高斯RBF核映射下的多维数据的光谱角制图计算权值矩阵W,并用Nystrm方法来降低算法的运算复杂度,实现了多/高光谱遥感数据的半监督分类。最后通过实验验证了该算法无论对多光谱还是高光谱都有较好的分类效果。 A semi-supervised, cluster-ensemble based method for the classification of multi / hyperspectral images is presented. Spectral clustering is a graph theory based clustering algorithm taking similarity as the basis, and has become increasingly popular in recent years. It can deal with arbitrary distribution of dataset but with a drawback for being sensitive to the scaling parameters. Cluster ensemble techniques are effective in improving both the robustness and the stability of the single clustering algorithm. Cluster ensemble also has a character of good robustness and generalization ability. The processing method in this paper utilizes the merits of cluster ensemble and develops a consensus function based spectral clustering algorthm. The clustering components are generated by spectral clustering. The affinity matrix is generated by computing the SAM between different datapoints. The Nystrm method is used to to speed up the classification process.Thus semi-supervised classification to multi / hyperspectral remote sensed data is completed. Experiments show that the method presented here has an excellent classificaation result for both multispectral and hyperspectral remote sensed dataset.
出处 《电光与控制》 北大核心 2016年第5期30-36,共7页 Electronics Optics & Control
基金 国家自然科学基金(61032001 60801049) 国家"八六三"计划创新基金(2010AAJ140)
关键词 图像分类 半监督分类 多光谱图像 高光谱图像 谱聚类 聚类集成 image classification semi-supervised classification multispectral image hyperspectral image spectral clustering cluster ensemble
  • 相关文献

参考文献19

  • 1MATHER P M, KOCH M. Computer processing of remote- ly-sensed images [ M ]. 4th ed. New York : A John Wiley & Sons, Ltd., Publication, 2011:229-284.
  • 2ALAJLAN N, BAZI Y, MELGANI F, et al. Fusion of super- vised and unsupervised learning for improved classification of hyperspectral images [ J ]. Information Sciences, 2012, 217:39-55.
  • 3JOHNSON B, XIE Z X. Unsupervised image segmentation evaluation and refinement using a multi-scale approach [ J ]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(4) :473-483.
  • 4DUNDAR M M, LANDGREBE D A. A cost-effective semi- supervised classifier approach with kernels [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 ( 1 ) :264-270.
  • 5王娜,李霞.基于监督信息特性的主动半监督谱聚类算法[J].电子学报,2010,38(1):172-176. 被引量:33
  • 6王雪松,张晓丽,程玉虎,李立晶.一种基于谱聚类的聚类核半监督支持向量机[J].中国矿业大学学报,2010,39(6):886-890. 被引量:2
  • 7MANTRACHA A, VAN ZEEBROECK N, FRANCQ P, et al. Semi-supervised classification and betweenness com- putation on large, sparse, directed graphs [ J J. Pattern Recognition, 2011, 44 : 1212-1224.
  • 8CAMPS-VALLS G, BANDOS T, ZHOU D Y. Semi-super- vised graph-based hyperspectral image classification[ J ]. IEEE Transactions on Geoscience and Remote Sensing,2007, 45 (10) :3044-3054.
  • 9刘汉强,赵凤.基于空间特征的谱聚类含噪图像分割[J].模式识别与人工智能,2012,25(3):419-425. 被引量:6
  • 10马秀丽,焦李成.基于分水岭-谱聚类的SAR图像分割[J].红外与毫米波学报,2008,27(6):452-456. 被引量:25

二级参考文献55

  • 1孙伟,夏良正.一种基于形态学的红外目标分割方法[J].红外与毫米波学报,2004,23(3):233-236. 被引量:21
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61-64. 被引量:10
  • 4S Kamvar,D Klein,C Manning. Spectral learning[ A] .In Proc. of IJCAI' 03 [ C ]. Mexico: Morgan Kaufmann Publishers, 2003.561 - 566.
  • 5A Demiriz, K Bennett, M Embrechts. Semi-supervised clustering using genetic algorithms[A]. In Proc. of the Intelligent Engineering Systems Through Artificial Neural Networks [C]. New York: ASME Press, 1999.809 - 814.
  • 6K Wagstaff, C Cardie, S Rogers, S Schroedl. Constrained k- means clustering with background knowledge[A]. In Proc. of ICML'01 [C]. San Francisco: Morgan Kaufmann Publishers, 2001.577 - 584.
  • 7S Basu,M Bilenko,R J Mooney.A probabilistic framework for semi-supervised clustering[A]. In Proc. of ICML'01 [C]. San Francisco: Morgan Kaufmann Publishers,2001.577- 584.
  • 8E Xing, A Ng, M Jordon, S Russell. Distance metric learning with application to clustering with side-information [A]. Advances in Neural Information Processing System [ C ]. Cambridge :MIT Press,2003.505 - 512.
  • 9D Klein, S Kamvar, C Manning. From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering[A] .In Proc. of ICML'02[C]. Sydney: Morgan Kaufmann Publishers,2002.307 - 314.
  • 10Bilenko M, Basu S, Mooney R. Integrating constraints and metric learning in semi-supervised clustering[A]. In Proc. of ICML'04[C]. Banff: ACM Press,2004.81 - 88.

共引文献120

同被引文献53

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部