期刊文献+

AlGaN背势垒对SiC衬底AlN/GaN HEMT器件的影响

Influence of AlGaN Back Barrier on AlN/GaN HEMTs on SiC Substrate
下载PDF
导出
摘要 利用相同器件工艺在两种不同材料结构上制备了Al N/Ga N高电子迁移率晶体管(HEMT),研究了Al Ga N背势垒结构对器件特性的影响。测试结果表明,有背势垒结构的器件最大饱和电流密度和峰值跨导要小于无背势垒结构器件,栅压偏置为+1 V时,无背势垒的Al N/Ga N HEMT器件最大饱和电流密度为1.02 A·mm-1,峰值跨导为304 m S·mm-1,有背势垒结构的器件饱和电流密度为0.75 A·mm-1,峰值跨导为252 m S·mm-1。有背势垒结构器件的亚阈值斜率为136 m V/dec,击穿电压为78 V;无背势垒结构器件的亚阈值斜率为150 m V/dec,击穿电压为64 V。栅长为0.25μm有背势垒结构的器件电流截止频率高于无背势垒结构器件,最高振荡频率要低于无背势垒结构的器件。 The Al N / Ga N high electron mobility transistors( HEMTs) with different material structures were fabricated using the same device process. The influences of Al Ga N back barriers on the characteristics of the devices were studied. The test results show that the maximum saturation current density and the peak-transconductance of the device with Al Ga N back barrier are lower than those of the device without Al Ga N back barrier. When the gate voltage bias is 1 V,the Al N / Ga N HEMTs without Al Ga N back barrier show a maximum drain current density of 1. 02 A·mm- 1and the peak-transconductance of304 m S·mm- 1,while the Al N/Ga N HEMTs with Al Ga N back barrier show a maximum drain current density of 0. 75 A·mm- 1and the peak-transconductance of 252 m S ·mm- 1. The device with Al Ga N back barrier shows subthreshold slope of 136 m V / dec and a breakdown voltage of 78 V,while the device without Al Ga N back barrier shows a subthreshold slope of 150 m V / dec and a breakdown voltage of 64 V.For a 0. 25 mm gate length,the device with Al Ga N back barrier shows higher current cut-off frequency and lower maximum oscillation frequency than that of the device without Al Ga N back barrier.
出处 《半导体技术》 CAS CSCD 北大核心 2016年第5期378-383,共6页 Semiconductor Technology
关键词 AlN/GaN高电子迁移率晶体管(HEMT) SIC衬底 AlGaN背势垒 直流(DC)特性 射频(RF)特性 AlN/GaN high electron mobility transistor(HEMT) SiC substrate AlGaN back barrier direct current(DC) characteristic radio frequency(RF) characteristic
  • 相关文献

参考文献3

二级参考文献40

  • 1薛舫时.氮化物异质结电子气的二维特性和迁移率[J].固体电子学研究与进展,2007,27(1):1-6. 被引量:14
  • 2ONOJIMA N, HIGASHIWAKI M, SUDA J, et al. Reduction in potential barrier height of AlGaN/GaN heterostructures by SiN passivation[J]. J Appl Phys, 2007, 101 (4): 043703-1 - 043703-6.
  • 3KORDOS P, GREGUSOVA D, STOKLAS R, et al. Improved transport properties of Al2O3/AlGaN/GaN metaloxide-semiconductor heterostructure field-effect transistor[J].Appl Phys Lett, 2007, 90 (12): 123513- 123515.
  • 4WALLIS D J, BALMER R S, KEIR A M. Z-contrast imaging of AlN exclusion layers in GaN field-effect transistors [J]. Appl Phys Lett, 2005, 87 (4): 042101-042103.
  • 5CHU R, SHEN L, FICHTENBAUM N, et al. V-gate GaN HEMTs for X-band power applications[J]. IEEE Electron Device Lett, 2008, 29 (9): 974-976.
  • 6KOUDYMOV A, ADIVARAHAN V, YANG J, et al. Mechanism of current collapse removal in field-plated nitride HFETs [J]. IEEE Electron Device Lett, 2005, 26 (10):704 - 706.
  • 7SIMIN G, ADIVARAHAN V, YANG J, et al. Stable 20W/mm AlGaN-GaN MOSHFET [J]. Electron Lett, 2005, 41 (13): 774-775.
  • 8MIYOSHI M, SAKAl M, ARULKUMARAN S, et al, Characterization of different-Al-content AlGaN/GaN heretostructures and high-electron-mobility transistors grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy[J].Jpn J Appl Phys, 2004, 43 (12): 7939 - 7943.
  • 9SMORCHKOVA I P, CHEN L, MATES T, et al. AlN/ GaN and AlGaN/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy[J]. J Appl Phys, 2001, 90 (10): 5196-5201.
  • 10HASEGAWA H, INAGAKI T, OTOMO S, et al. Mechanisms of collapse and gate leakage currents in AlGaN/GaN heterostructure field effect transistors [J]. J Vac Sci Technol, 2003, 21 (4): 1844-1855

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部