期刊文献+

基于Web的剂量体积直方图数据自动提取工具开发及验证 被引量:2

Development and validation of Web-based automated dose-volume histogram data analyzer
下载PDF
导出
摘要 目的:开发并测试一套基于Web的剂量体积直方图(DVH)数据自动提取工具。方法:(1)采用Django应用框架和Python编程语言,设计一套基于Web的DVH数据自动提取工具。(2)利用自动工具分析从Eclipse计划系统中导出的30例相同类型计划的DVH表单数据,并采用人工方法读取DVH图中的相应参数作为对比,分析其耗时、准确性等方面的表现及误差产生原因。结果:自动提取DVH数据的效率远高于人工分析,且正确率更有保障。对于计划靶区体积的均匀性指数、股骨头和膀胱D_(50%)和平均剂量等参数,自动与人工提取的差异极小(误差≤0.01%,P>0.05)。但对于适形指数(CI)值的计算,由于计划系统空间采样算法的原因使得基于等剂量线结构转换测量以及DVH表单数据分析之间的结果存在较大差异[CI_PGTV平均相差(2.60±1.04)%,CI_PTV平均相差(0.66±0.29)%,P<0.001],但Web工具采用的DVH分析结果更加接近Eclipse自动生成的CI值,且有效避免了后者一次只能计算一个CI值的缺陷。结论:本工作开发的基于Web的工具可以对海量DVH数据进行高效、准确的自动统计,且具有跨平台应用等优势。 Objective To develop and validate a Web-based automated dose-volume histogram(DVH) data analyzer. Methods Based on the Django framework and Python programming language, a web-based automated DVH data analyzer was designed.The DVH in tabular format of 30 similar plans were exported from Eclipse planning system by using automated analyzer; the corresponding parameters of DVH were extracted manually. And the exported data were compared with the extracted data to analyze the efficiency, accuracy and the reasons of errors. Results Compared with manual method, the automated DVH data analyzer showed superior efficiency and accuracy. For the parameters such as HI_PTV, D_(50%)and mean dose for the femoral head and urinary bladder, the disparities between manual and automatic extraction were negligible(Error≤0.01%, P0.05). However,significant differences in the calculation of conformity index(CI) were observed between the isodose conversion method and the DVH extraction, which was ascribed to the spatial sampling algorithms of planning system. The mean difference in CI_PGTV and CI_PTVwere respectively(2.60±1.04)% and(0.66±0.29)%, P0.001. The results of DVH extraction adopted by the Web-based analyzer were more close to the CI values auto-generated by Eclipse. And the Web-based analyzer effectively conquered the limitation of Eclipse which only calculated a CI value at a time. Conclusion The developed Web-based DVH analyzer can autoanalyze large amount of DVH data efficiently and accurately, with the advantage of cross-platform application.
出处 《中国医学物理学杂志》 CSCD 2016年第5期433-436,462,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(11505012,81402535) 北京市医院管理局“青苗”计划专项经费资助(QML20151004) 质检公益性行业科研专项(201510001-02)
关键词 WEB 剂量体积直方图 自动分析 大数据 放疗计划 剂量学 Web dose-volume histogram auto-analysis big data treatment planning dosimetry
  • 相关文献

参考文献17

  • 1DRZYMALA R E, MOHAN R, BREWSTER L, et al. Dose- volume histograms {J ]. Int J Radiat Oncol Biol Phys, 1991, 21(1): 71-78.
  • 2XING L, LI J G, PUGACHEV A, et al. Estimation theory and model parameter selection for therapeutic treatment plan optimization[ J]. Med Phys, 1999, 26( 11 ): 2348-2358.
  • 3CHENG C W, DAS l J, Treatment plan evaluation using dose-volume histogram (DVH) and spatial dose-volume histogram (zDVH){ J ]. Int J Radiat Oncol Biol Phys, 1999, 43(5): 1143-1150.
  • 4OETZEL D, SCHRAUBE P, HENSLEY F, et al. Estimation of pneumonitis risk in three-dimensional treatment planning using dose- volume histogTam analysis[ J]. Int J Radiat Oncol Biol Phys, 1995, 33 (2): 455-460.
  • 5WARKENTlN B J, STAVREV P, STAVREVA N, et al. A TCP- NTCP estinaation module using DVHs and known radiobiological models and parameter sets[ J]. J Appl Clin Med Phys, 2004, 5(1): 50-63.
  • 6ZHEN H, NELMS B E, TOME WA. Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA [ J]. Med Phys, 2011, 38( 10): 5477-5489.
  • 7STASI M, BRESCIANI S, MIRANTI A, et al. Pretreatment patient- specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram [J]. Med Phys, 2012, 39(12): 7626-7634.
  • 8LANDRY J C, YANG G Y, TING J Y, et al. Treatment &pancreatic cancer tumors with intensity-modulated radiation therapy (IMRT) using the volume at risk approach (VARA): employing dose-volume histogram (DVH) and normal tissue complication probability (NTCP) to evaluate small bowel toxicity[J]. Med Dosim, 2002, 27(2): 121-129.
  • 9FENG Z, WU H, ZHANG Y, et al. Dosimetric comparison between jaw tracking and static jaw techniques in intensity-modulated radiotherapy[J]. Radiat Oncol, 2015, 10(1): 28.
  • 10BARRIGER R B, FORQUER J A, BRABHAM J G, et al. A dose- volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy [ J ]. Int J Radiat Oncol Biol Phys, 2012, 82(1): 457-462.

同被引文献10

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部